176 resultados para Segmental blocks
Resumo:
Although globular proteins are endowed with well defined three-dimensional structures, they exhibit substantial mobility within the framework of the given threedimensional structure. The different types of mobility found in proteins by and large correspond to the different levels of organisational hierarchy in protein architecture. They are of considerable structural and functional significance, and can be broadly classified into(a) thermal and conformational fluctuations, (b) segmental mobility, (c) interdomain mobility and (d) intersubunit mobility. Protein crystallographic studies has provided a wealth of information on all of them. The temperature factors derived from X-ray diffraction studies provide a measure of atomic displacements caused by thermal and conformational fluctuations. The variation of displacement along the polypeptide chain have provided functionally significant information on the flexibility of different regions of the molecule in proteins such as myoglobin, lysozyme and prealbumin. Segmental mobility often involves the movement of a region or a segment of a molecule with respect to the rest, as in the transition between the apo and the holo structures of lactate dehydrogenase. It may also involve rigidification of a disordered region of the molecule as in the activation of the zymogens of serine proteases. Transitions between the apo and the holo structures of alcohol dehydrogenase,and between the free and the sugar bound forms of hexokinase, are good examples of interdomain mobility caused by hinge-bending. The capability of different domains to move semi-independently contributes greatly to the versatility of immunoglobulin molecules. Interdomain mobility in citrate synthase appears to be more complex and its study has led to an alternative description of domain closure. The classical and the most thoroughly studied case of intersubunit mobility is that in haemoglobin. The stereochemical mechanism of the action of this allosteric protein clearly brings out the functional subtilities that could be achieved through intersubunit movements. In addition to ligand binding and activation,environmental changes also often cause structural transformations. The reversible transformation between 2 Zn insulin and 4 Zn insulin is caused by changes in the ionic strength of the medium. Adenylate Kinase provides a good example for functionally significant reversible conformational transitions induced by variation in pH. Available evidences indicate that reversible structural transformations in proteins could also be caused by changes in the aqueous environment, including those in the amount of water surrounding protein molecules.
Resumo:
Multiplexers, as in the case of binary, are very useful building blocks in the development of quaternary systems. The use of quaternary multiplexer (QMUX) in the implementation of quaternary adder, subtractor and multiplier is described in this paper. Quaternary coded decimal (QCD) adder/subtractor and quaternary excess-3 adder/subtractor realization using QMUX are also proposed
Resumo:
Thioacetamide, a hepatocarcinogen and an inhibitor of heme synthesis, blocks the phenobarbitone- mediated increase in the transcription of cytochrome P-450b+e messenger RNA in rat liver. This property is also shared by CoCl, and 3-amino-l,2,4-triazole, two other inhibitors of heme synthesis. Thus, it appears feasible that heme may serve as a positive regulator of cytochrome P-450b+e gene transcription. Thioacetamide enhances albumin messenger RNA concentration, whereas phenobarbitone decreases the same. However, these changes in albumin messenger RNA concentration are not accompanied by corresponding changes in the transcription rates. Therefore, drug-mediated changes in albumin messenger RNA concentration are due to posttranscriptional regulation. The property of thioacetamide to enhance the albumin messenger RNA concentration is not shared by CoC1, and 3-amino- 1,2,4-triazole. Therefore, heme does not appear to be a regulatory molecule mediating the reciprocal changes brought about in the concentrations of cytochrome P-450b+e and albumin messenger RNAs.
Resumo:
In this paper we develop compilation techniques for the realization of applications described in a High Level Language (HLL) onto a Runtime Reconfigurable Architecture. The compiler determines Hyper Operations (HyperOps) that are subgraphs of a data flow graph (of an application) and comprise elementary operations that have strong producer-consumer relationship. These HyperOps are hosted on computation structures that are provisioned on demand at runtime. We also report compiler optimizations that collectively reduce the overheads of data-driven computations in runtime reconfigurable architectures. On an average, HyperOps offer a 44% reduction in total execution time and a 18% reduction in management overheads as compared to using basic blocks as coarse grained operations. We show that HyperOps formed using our compiler are suitable to support data flow software pipelining.
Resumo:
The Palghat–Cauvery suture zone in southern India separates Archaean crustal blocks to the north and the Proterozoic Madurai block to the south. Here we present the first detailed study of a partially retrogressed eclogite (from within the Sittampundi anorthositic complex in the suture zone) that occurs as a 20-cm wide layer in a garnet gabbro layer in anorthosite. The eclogite largely consists of an assemblage of coexisting porphyroblasts of almandine–pyrope garnet and augitic clinopyroxene. However, a few garnets contain inclusions of omphacite. Rims and symplectites composed of Na–Ca amphibole and plagioclase form a retrograde assemblage. Petrographic analysis and calculated phase equilibria indicate that garnet–omphacite–rutile–melt was the peak metamorphic assemblage and that it formed at ca. 20 kbar and above 1000 °C. The eclogite was exhumed on a very tight hairpin-type, anticlockwise P–T path, which we relate to subduction and exhumation in the Palghat–Cauvery suture zone. The REE composition of the minerals suggests a basaltic oceanic crustal protolith metamorphosed in a subduction regime. Geological–structural relations combined with geophysical data from the Palghat–Cauvery suture zone suggest that the eclogite facies metamorphism was related to formation of the suture zone. Closure of the Mozambique Ocean led to development of the suture zone and to its western extension in the Betsimisaraka suture of Madagascar.
Resumo:
Managing sludge generated by treating groundwater contaminated with geogenic contaminants (fluoride, arsenic, and iron) is a major issue in developing nations. Their re-use in civil engineering applications is a possible pathway for reducing the impact on the geo-environment. This paper examines the re-use of one such sludge material, namely, fluoride contaminated bone char sludge, as partial replacement for fine aggregate (river-sand) in the manufacture of dense concrete specimens. Bone char sludge is being produced by defluoridation of contaminated groundwater in Nalagonda District, Andhra Pradesh, India. The impact of admixing 1.5-9% sludge contents on the compression strength and fluoride leaching potential of the sludge admixed concrete (SAC) specimens are examined. The compression strengths of the SAC specimensa re examined with respect to strength criteria for manufacture of dense, load-bearing concrete blocks. The fluoride release potential of the SAC specimens is examined with respect to standards specific to disposal of treated leachate into inland surface water.
Resumo:
For the problem of speaker adaptation in speech recognition, the performance depends on the availability of adaptation data. In this paper, we have compared several existing speaker adaptation methods, viz. maximum likelihood linear regression (MLLR), eigenvoice (EV), eigenspace-based MLLR (EMLLR), segmental eigenvoice (SEV) and hierarchical eigenvoice (HEV) based methods. We also develop a new method by modifying the existing HEV method for achieving further performance improvement in a limited available data scenario. In the sense of availability of adaptation data, the new modified HEV (MHEV) method is shown to perform better than all the existing methods throughout the range of operation except the case of MLLR at the availability of more adaptation data.
Resumo:
In this paper, we develop a cipher system based on finite field transforms. In this system, blocks of the input character-string are enciphered using congruence or modular transformations with respect to either primes or irreducible polynomials over a finite field. The polynomial system is shown to be clearly superior to the prime system for conventional cryptographic work.
Resumo:
Various field test (namely vibration tests on blocks or plates, steady-state vibration or Rayleigh wave tests, wave propagation tests, and cyclic load tests) were conducted at a number of sites in India to determine the dynamic shear modulus, G. Data obtained at different sites are described. The values of G obtained from the different tests at a given site vary widely. The rational approach for selecting the value of G from field tests for use in the analysis and design of soil-structure interaction problems under dynamic loads must account for the factors affecting G. The suggested approach, which provides a possible answer, is suitable in cohesionless soils below the water table where it is rather difficult, if not impossible, to obtain undisturbed samples.
Resumo:
The design, implementation and evaluation are described of a dual-microcomputer system based on the concept of shared memory. Shared memory is useful for passing large blocks of data and it also provides a means to hold and work with shared data. In addition to the shared memory, a separate bus between the I/O ports of the microcomputers is provided. This bus is utilized for interprocessor synchronization. Software routines helpful in applying the dual-microcomputer system to realistic problems are presented. Performance evaluation of the system is carried out using benchmarks.
Resumo:
A very concise and diversity-oriented approach to rapidly access frondosin-related frameworks from commercially available building blocks is outlined.
Resumo:
CRYSTAL structure determinations of nucleic acid fragments have shown that several of the conformational features found in the monomeric building blocks are also manifested at the nucleic acid level. Stereochemical variations between thymine and uracil nucleotides are therefore of interest as they can provide a structural basis for some of the differences between the conformations of DNA and RNA. X-ray studies have so far not shown any major dissimilarities between these two nucleotide species although the sugar ring of deoxyribonucleotides is found to possess greater flexibility than that in ribonucleotides. We report here the molecular structure of deoxyuridine-5'-phosphate (dUMP-5') which is not a common monomer unit of DNAs as it is replaced by its 5-methyl analogue deoxythymidine-5'-phosphate (dTMP-5'). The investigation was undertaken to help determine whether or not this implied a fundamental difference between the geometries of these two molecules.
Resumo:
Soil-cement blocks are employed for load bearing masonry buildings. This paper deals with the study on the influence of bed joint thickness and elastic properties of the soil-cement blocks, and the mortar on the strength and behavior of soil-cement block masonry prisms. Influence of joint thickness on compressive strength has been examined through an experimental program. The nature of stresses developed and their distribution, in the block and the mortar of the soil-cement block masonry prism under compression, has been analyzed by an elastic analysis using FEM. Influence of various parameters like joint thickness, ratio of block to mortar modulus, and Poisson's ratio of the block and the mortar are considered in FEM analysis. Some of the major conclusions of the study are: (1) masonry compressive strength is sensitive to the ratio of modulus of block to that of the mortar (Eb/Em) and masonry compressive strength decreases as the mortar joint thickness is increased for the case where the ratio of block to mortar modulus is more than 1; (2) the lateral tensile stresses developed in the masonry unit are sensitive to the Eb/Em ratio and the Poisson's ratio of mortar and the masonry unit; and (3) lateral stresses developed in the masonry unit are more sensitive to the Poisson's ratio of the mortar than the Poisson's ratio of the masonry unit.
Resumo:
The control of shapes of nanocrystals is crucial for using them as building blocks for various applications. In this paper, we present a critical overview of the issues involved in shape-controlled synthesis of nanostructures. In particular, we focus on the mechanisms by which anisotropic structures of high-symmetry materials (fcc crystals, for instance) could be realized. Such structures require a symmetry-breaking mechanism to be operative that typically leads to selection of one of the facets/directions for growth over all the other symmetry-equivalent crystallographic facets. We show how this selection could arise for the growth of one-dimensional structures leading to ultrafine metal nanowires and for the case of two-dimensional nanostructures where the layer-by-layer growth takes place at low driving forces leading to plate-shaped structures. We illustrate morphology diagrams to predict the formation of two-dimensional structures during wet chemical synthesis. We show the generality of the method by extending it to predict the growth of plate-shaped inorganics produced by a precipitation reaction. Finally, we present the growth of crystals under high driving forces that can lead to the formation of porous structures with large surface areas.
Resumo:
The recent trend towards minimizing the interconnections in large scale integration (LSI) circuits has led to intensive investigation in the development of ternary circuits and the improvement of their design. The ternary multiplexer is a convenient and useful logic module which can be used as a basic building block in the design of a ternary system. This paper discusses a systematic procedure for the simplification and realization of ternary functions using ternary multiplexers as building blocks. Both single level and multilevel multiplexing techniques are considered. The importance of the design procedure is highlighted by considering two specific applications, namely, the development of ternary adder/subtractor and TCD to ternary converter.