163 resultados para Schleswig-Holstein. K. Staatsarchiv.
Resumo:
Although Pb(Zr1-XTiX)O-3 solid solution is the cornerstone of the piezoelectric ceramics, there is no information in the literature on thermodynamic activities of the component phases in the solid solution. Using inter-crystalline ion exchange equilibria between Pb(Zr1-XTiX)O-3 solid solution with cubic perovskite structure and (Zr1-YTiY)O-2 solid solutions with monoclinic and tetragonal structures, activities of PbTiO3 and PbZrO3 in the perovskite solid solution have been derived at 1373 K using the modified Gibbs-Duhem integration technique of Jacob and Jeffes. Tie-lines from the cubic solid solution are skewed towards the ZrO2 corner. Activities in the zirconia-rich (Zr1-YTiY)02 solid solutions are taken from a recent emf study. The results for the perovskite solid solution at 1373 K can be represented by a sub-regular solution model: Delta G(E.M) (J mol(-1)) = X-PbTiO3 X-PbZrO3(5280X(PbTiO3) - 1980X(PbZrO3)) where Delta G(E.M) is the excess Gibbs energy of mixing of the cubic solid solution and Xi represents the mole fraction of component i. There is a significant positive deviation from ideality for PbTiO3-rich compositions and mild negative deviation near the PbZrO3 corner. The cubic solid solution is intrinsically stable against composition fluctuations at temperatures down to 840 K. The results contrast sharply with the recent calorimetric data on enthalpy of mixing which signal instability of the cubic perovskite solid solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The Ball-Larus path-profiling algorithm is an efficient technique to collect acyclic path frequencies of a program. However, longer paths -those extending across loop iterations - describe the runtime behaviour of programs better. We generalize the Ball-Larus profiling algorithm for profiling k-iteration paths - paths that can span up to to k iterations of a loop. We show that it is possible to number suchk-iteration paths perfectly, thus allowing for an efficient profiling algorithm for such longer paths. We also describe a scheme for mixed-mode profiling: profiling different parts of a procedure with different path lengths. Experimental results show that k-iteration profiling is realistic.
Resumo:
The tie-lines representing the inter-crystalline ion exchange equilibria between the NiCr2O4-NiAl2O4 spinet solid solution and Cr2O3-Al2O3 corundum solid solution are determined by electron microprobe andEDAX pointcountanalysis of the oxide phases equilibrated with metallic Ni at 1373 K. The component activities in the spinet solid solution are derived from the tie-lines and thermodynamic data for Cr2O3-Al2O3 solid solution available in the literature. The Gibbs energy of mixing of the spinet solid solution calculated from the experimental data is discussed in relation to the values derived from the cation distribution models which assume random mixing of cations on both tetrahedral and octahedral sites. Positive deviation from the models is observed indicating significant positive enthalpy contribution arising form the size mismatch between Al+3 and Ni+2 ions on the tetrahedral site and Al+3, Ni+2 and Cr+3 on the octahedral site. Variation of the oxygen potential for threephase equilibrium involving metallic nickel, spinet solid solution and corundum solid solution is computed as a function of composition of the solid solutions at 1373 K. The oxygen potential exhibits a minimum at aluminum cationic fraction eta(Al)/(eta(Al) + eta(Cr)) = 0.524 in the oxide solid solutions.
Resumo:
The k-means algorithm is an extremely popular technique for clustering data. One of the major limitations of the k-means is that the time to cluster a given dataset D is linear in the number of clusters, k. In this paper, we employ height balanced trees to address this issue. Specifically, we make two major contributions, (a) we propose an algorithm, RACK (acronym for RApid Clustering using k-means), which takes time favorably comparable with the fastest known existing techniques, and (b) we prove an expected bound on the quality of clustering achieved using RACK. Our experimental results on large datasets strongly suggest that RACK is competitive with the k-means algorithm in terms of quality of clustering, while taking significantly less time.
Resumo:
Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K-edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3. The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K-edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.
Resumo:
1. 1. Colon lysosome were separated by differential centrifugation and lysosomes with three different densities, probably arising from the three layers of colon, were found. 2. 2. Hypervitaminosis A resulted in a significant increase in prothrombin time which was restored to normal on vitamin K1 (20) supplementation. 3. 3. There was no appreciable change in the liver storage of vitamin A between hypervitaminotic rats receiving vitamin A and those rats receiving vitamin K1 (20) in addition to excess vitamin A. 4. 4. The colon lysosomes were unstable in hypervitaminosis A, showing an increased free activity of lysosomal enzymes like β-glucuronidase, acid phosphatase and arylsulphatase. This increase of free activity of lysoso3al enzymes in hypervitaminosis A could be prevented by oral supplementation of vitamin K1 (20). 5. 5. In "mild" vitamin A deficiency the release of arylsulphatase was significantly retarded, whereas the decreased free acid phosphatase activity was not significant. 6. 6. "Severe" vitamin A deficiency resulted in a significantly increased free activity of arylsulphatase and acid phosphatase, thus showing the instability of the lysosomal particles in this condition. 7. 7. Addition of vitamin K1 (20) to the incubation medium in vitro could prevent the vitamin A-induced release of arylsulphatase from liver lysosomes, whereas α-tocopherol was inactive. 8. 8. Retinol and retinoic acid were nearly twice as active as ethanol in the release of arylsulphatase from lysosomes in vitro, whereas 5,6-monoepoxyretinoic acid was inactive. 9. 9. The role of vitamins A and K on the lysosomal membrane structure is discussed.
Resumo:
1.(1) Incorporation of Na235SO4 into acid mucopolysaccharides of intestine and colon tissue has been studied in normal, vitamin A-deficient and excess vitamin A-fed rats. 2. (2) Vitamin A deficiency resulted in a significant decrease in [35S]sulfate incorporation into mucopolysaccharides isolated from intestines of male rats. There was no significant change in the total mucopolysaccharides per gram of fresh tissue. 3. (3) When rats are fed excessive amounts of retinyl acetate, increased [35S]sulfate incorporation into mucopolysaccharides of rat intestine and colon is observed. 4. (4) Supplementation of vitamin K1 to rats fed excessive amounts of vitamin A restores the incorporation of [35S]sulfate into the acid mucopolysaccharides to the normal level. 5. (5) The implications of these findings with special reference to the role of vitamins A and K in the synthesis of sulfated mucopolysaccharides are discussed.
Resumo:
A popular dynamic imaging technique, k-t BLAST (ktB) is studied here for BAR imaging. ktB utilizes correlations in k-space and time, to reconstruct the image time series with only a fraction of the data. The algorithm works by unwrapping the aliased Fourier conjugate space of k-t (y-f-space). The unwrapping process utilizes the estimate of the true y-f-space, by acquiring densely sampled low k-space data. The drawbacks of this method include separate training scan, blurred training estimates and aliased phase maps. The proposed changes are incorporation of phase information from the training map and using generalized-series-extrapolated training map. The proposed technique is compared with ktB on real fMRI data. The proposed changes allow for ktB to operate at an acceleration factor of 6. Performance is evaluated by comparing activation maps obtained using reconstructed images. An improvement of up to 10 dB is observed in thePSNR of activation maps. Besides, a 10% reduction in RMSE is obtained over the entire time series of fMRI images. Peak improvement of the proposed method over ktB is 35%, averaged over five data sets. (C)2010 Elsevier Inc. All rights reserved.
Resumo:
In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,
Resumo:
Upper bounds at the weak scale are obtained for all lambda(ij)lambda(im) type product couplings of the scalar leptoquark model which may affect K-0 - (K) over bar (0), B-d - (B) over bar (d), and B-s - (B) over bar (s) mixing, as well as leptonic and semileptonic K and B decays. Constraints are obtained for both real and imaginary parts of the couplings. We also discuss the role of leptoquarks in explaining the anomalously large CP-violating phase in B-s - (B) over bar (s) mixing.
Resumo:
We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t = 0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher-order ChPT corrections at the second Callan-Treiman point.
Resumo:
The activity of gallium in liquid Ga-Te alloys has been measured at 1120 K using a solid state galvanic cell incorporating yttria-stabilized thoria as the solid electrolyte. The cell can be schematically represented as (−) W,Re,Ga(1)+Ga2O3(s)|(Y2O3) ThO2|Ga-Te(1) + Ga2O3(s), Re, W (+) The activity of tellurium was derived by Gibbs-Duhem integration. The activity of gallium shows negative deviation from Raoult's law for XGa < 0.6 and positive deviation from ideality for XGa > 0.6. The activity of gallium was constant in the composition range 0.73 < XGa < 0.89, indicating liquid state immiscibility in this region. The Gibbs energy of mixing and the concentration-concentration structure factor at long wavelength limit show a minimum at XGa ≈ 0.4, suggesting strong interactions in the liquid phase with formation of ‘Ga2Te3‘-type complexes