152 resultados para Scanned electron microscopy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dense rutile TiO2 nanorods were grown on anatase TiO2 seed layer coated glass substrate by solution technique. The crystalline nature of nanorods has confirmed by transmission electron microscopy. The band gap of the TiO2 seed layer and nanorods were calculated using the UV-vis absorption spectrum and the band gap value of the anatase seed layer and rutile nanorods were 3.39 eV and 3.09 eV respectively. Water contact angle measurements were also made and showed that the contact angle of rutile nanorods was (134 degrees) larger than the seed layer contact angle (93 degrees). The RMS surface roughness of the TiO2 seed layer (0.384 nm) and nanorods film (18.5 nm) were measured by an atomic force microscope and correlated with their contact angle values. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) (0.85PMN-0.15PT) ferroelectric relaxor thin films have been deposited on La0.5Sr0.5CoO3/(111) Pt/TiO2/SiO2/Si by pulsed laser ablation by varying the oxygen partial pressures from 50 mTorr to 400 mTorr. The X-ray diffraction pattern reveals a pyrochlore free polycrystalline film. The grain morphology of the deposited films was studied using scanning electron microscopy and was found to be affected by oxygen pressure. By employing dynamic contact-electrostatic force microscopy we found that the distribution of polar nanoregions is majorly affected by oxygen pressure. Finally, the electric field induced switching in these films is discussed in terms of domain wall pinning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silicon nanowires (NWs) have been grown in the vapor phase for the first time with bismuth (Bi) as a catalyst using the electron beam evaporation method at a low substrate temperature of 280 degrees C. The grown Si nanowires were randomly oriented on the substrate with an average length of 900 nm for a deposition time of 15 min. Bi faceted nanoparticles (crowned) at the end of the grown Si nanowires have been observed and attributed to the Vapor-Liquid-Solid (VLS) growth mechanism. Transmission Electron Microscopy analysis on the nanowires revealed their single crystalline nature and interestingly bismuth particles were observed in Si nanowires. The obtained results have shown a new window for Si nanowires growth with bismuth as a catalyst. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CoFe2O4 nanoparticles were prepared by solution combustion method. The nanoparticle are characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). PXRD reveals single phase, cubic spinel structure with Fd (3) over barm (227) space group. SEM micrograph shows the particles are agglomerated and porous in nature. Electron paramagnetic resonance spectrum exhibits a broad resonance signal g=2.150 and is attributed to super exchange between Fe3+ and Co2+. Magnetization values of CoFe2O4 nanoparticle are lower when compared to the literature values of bulk samples. This can be attributed to the surface spin canting due to large surface-to-volume ratio for a nanoscale system. The variation of dielectric constant, dielectric loss, loss tangent and AC conductivity of as-synthesized nano CoFe2O4 particles at room temperature as a function of frequency has been studied. The magnetic and dielectric properties of the samples show that they are suitable for electronic and biomedical applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 x 10(9)/cm(2) and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600-1900 cm(2)/V s at a carrier concentration of 0.7-0.9 x 10(13)/cm(2). Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner. (C) 2015 AIP Publishing LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microwave plasma driven chemical vapour deposition was used to synthesize graphene nanosheets from a mixture of acetylene and hydrogen gas molecules. In this plasma, acetylene decomposes to carbon atoms that form nanostructures in the outlet plasma stream and get deposited on the substrate. The GNS consists of a few layers of graphene aligned vertically to the substrate. Graphene layers have been confirmed by high-resolution transmission electron microscopy, and Raman spectral studies were conducted to observe the defective nature of the sample. The growth of nanosheets in a vertical direction is assumed to be due to the effect of electric field and from the difference in the deposition rate in the axial and parallel directions. These vertical graphene sheets are attractive for various applications in energy storage and sensors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mouse and human malarial parasites, Plasmodium berghei and Plasmodium falciparum, respectively, synthesize heme de novo following the standard pathway observed in animals despite the availability of large amounts of heme, derived from red cell hemoglobin, which is stored as hemozoin pigment, The enzymes, delta-aminolevulinate dehydrase (ALAD), coproporphyrinogen oxidase, and ferrochelatase are present at strikingly high levels in the P, berghei infected mouse red cell in vivo, The isolated parasite has low levels of ALAD and the data clearly indicate it to be of red cell origin. The purified enzyme preparations from the uninfected red cell and the parasite are identical in kinetic properties, subunit molecular weight, cross-reaction with antibodies to the human enzyme, and N-terminal amino acid sequence. Immunogold electron microscopy of the infected culture indicates that the enzyme is present inside the parasite and, therefore, is not a contaminant, The parasite derives functional ALAD from the host and the enzyme binds specifically to isolated parasite membrane in vitro, suggestive of the involvement of a receptor in its translocation into the parasite, While, ALAD, coproporphyrinogen oxidase, and ferrochelatase from the parasite and the uninfected red cell supernatant have identical subunit molecular weights on SDS-polyacrylamide gel electrophoresis and show immunological cross-reaction with antibodies to the human enzymes, as revealed by Western analysis, the first enzyme of the pathway, namely, delta-aminolevulinate synthase (ALAS) in the parasite, unlike that of the red cell host, does not cross-react with antibodies to the human enzyme, However, ALAS enzyme activity in the parasite is higher than that of the infected red cell supernatant. We therefore conclude that the parasite, while making its own ALAS, imports ALAD and perhaps most of the other enzymes of the pathway from the host to synthesize heme de novo, and this would enable it to segregate this heme from the heme derived from red cell hemoglobin degradation, ALAS of the parasite and the receptor(s) involved in the translocation of the host enzymes into the parasite would be unique drug targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four new hybrid (bolaphile/amphiphile) ion-pairs were synthesized. Electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. Membrane properties have also been examined by differential scanning calorimetry, microcalorimetry, temperature-dependent fluorescence anisotropy measurements, and UV-vis spectroscopy. The T-m values for the vesicular 1, 2, 3, 4, and 5 were 38, 12, 85, 31.3, and 41.6 degrees C, respectively. Interestingly the T-m values for 1 and 3 were found to depend on their concentration. The entrapment of small solute and the release capability have also been examined to demonstrate that these bilayers form enclosed vesicles. X-ray diffraction of the cast films has been performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 33 to 47 Angstrom. Finally, the above observations have been analyzed in light of the results obtained from molecular modeling studies. Thus we have demonstrated that membrane properties can be modulated by simple structural changes at the amphiphile level. It was shown that by judicious incorporation of central, isomeric, disubstituted aromatic units as structural anchors into different bolaphiles, one can modulate the properties of the resulting vesicles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new ternary interstitial nitride Ni2W3N has been synthesized by the ammonolysis of different oxide precursors and characterized by powder X-ray diffraction and electron microscopy. This nitride crystallizes in the cubic space group P4(1)32(213) [Ni2W3N, a=6.663(1) Angstrom, Z=4] and is isostructural with Al2Mo3C. This compound belongs to the rare class of intermetallic ternary nitrides and carbides crystallizing with a filled beta-Mn structure. Ni2W3N is not stable, it decomposes to a new compound NiW3N related to the distorted anti-perovskite, Ca3AsN structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In contrast to metallic alloys, the mechanical characteristics of superplastic ceramics are very sensitive to minor changes in levels of trace impurities. In the present study, the mechanical behavior of a 2 mol% yttria stabilized tetragonal zirconia was studied in tension and compression in two batches of material, with small variations in levels of trace impurities, to examine the influence of stress axis and impurity content on the deformation behavior. The mechanical properties of the material were characterized in terms of the expression: (epsilon)over dot proportional to sigma(n) where (epsilon)over dot is the strain rate, sigma is the stress and n is termed the stress exponent. The mechanical behavior of the ceramic was identical in tension and compression, for a material with a given level of impurity. The high purity specimens exhibited a transition from a stress exponent of similar to 3 to similar to 2 with an increase in stress, whereas the low purity material displayed only n similar to 2 behavior over the entire stress range studied. Detailed high resolution and analytical electron microscopy studies revealed that there was no amorphous phase at interfaces in both batches of material; however, segregation of Al at interfaces was detected only in the low purity material. The observed transition in stress exponents can be rationalized in terms of two sequential mechanisms: grain boundary sliding with n similar to 2 and interface reaction controlled grain boundary sliding with n similar to 3. The transition from n similar to 3 to similar to 2 occurred at lower stresses with an increase in the grain size and a decrease in the purity level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Commercially available mullite (3Al(2)O(3). 2SiO(2)) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite, The 425 mu m thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 degrees C and less than 200 degrees C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 degrees C, spallation occurred early at 120 cycles when shocked from 1200 degrees C, The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure, These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deposition of good quality thin films of Lithium Cobalt Oxide (LiCoO2), by sputtering is preceded by target conditioning, which dictates the surface composition, morphology and electrochemical performance of the deposited film. Sputtering from a Virgin target surface, results in films with excess of the more reactive elements. The concentration of these reactive elements in the films decreases until the system reaches a steady state after sufficient sputtering from the target. This paper discusses the deposition kinetics in terms of target conditioning of LiCoO2. The composition, morphology and texturing of deposited film during various hours of sputtering were analyzed using X-ray photoelectron Spectroscopy (XPS) and Field Emission Scanning electron microscopy (FESEM). The compositional stability is not observed in the films formed during the initial hours or Sputtering from the fresh target, which becomes stable after several hours of sputtering. The Li and Co concentration in the Films deposited subsequently is found to be varying and possible causes are discussed. After the compositional stability is reached, electrochemical analysis of LiCoO2 thin films was performed, which shows a discharge capacity of 129 mu Ah/cm(2).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silver nanoparticles are known to have bactericidal effects. A new generation of dressings incorporating antimicrobial agents like silver nanoparticles is being formulated to reduce or prevent infections. The particles can be incorporated in materials and cloth rendering them sterile. Recently, it was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Apart from being environmentally friendly process, use of Neem leaves extract might add synergistic antibacterial effect of Neem leaves to the biosynthesized nanoparticles. With this hypothesis the biosynthetic production of silver nanoparticles by aqueous extract of Neem leaves and its bactericidal effect in cotton cloth against E. Coli were studied in this work. Silver nanoparticles were synthesized by short term (1 day) and long term (21 days) interaction of Neem extract (20% w/v) and 0.01 M AgNO3 solution in 1:4 mixing ratio. The synthesized particles were characterized by UV visible spectroscopy, transmission electron microscopy, and incorporated into cotton disks by (i) centrifuging the disks with liquid broth containing nanoparticles, (ii) in-situ coating process during synthesis, and (iii) coating with dried and purified nanoparticles. The antibacterial property of the nanoparticles coated cotton disks was studied by disk diffusion method. The effect of consecutive washing of the coated disks with distilled water on antibacterial property was also investigated. This work demonstrates the possible use of biologically synthesized silver nanoparticles by its incorporation in cloths leading them to sterilization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.