35 resultados para SOU 2007:10


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we address the reconstruction problem from laterally truncated helical cone-beam projections. The reconstruction problem from lateral truncation, though similar to that of interior radon problem, is slightly different from it as well as the local (lambda) tomography and pseudo-local tomography in the sense that we aim to reconstruct the entire object being scanned from a region-of-interest (ROI) scan data. The method proposed in this paper is a projection data completion approach followed by the use of any standard accurate FBP type reconstruction algorithm. In particular, we explore a windowed linear prediction (WLP) approach for data completion and compare the quality of reconstruction with the linear prediction (LP) technique proposed earlier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a new approach for solving the state estimation problem. The approach is aimed at producing a robust estimator that rejects bad data, even if they are associated with leverage-point measurements. This is achieved by solving a sequence of Linear Programming (LP) problems. Optimization is carried via a new algorithm which is a combination of “upper bound optimization technique" and “an improved algorithm for discrete linear approximation". In this formulation of the LP problem, in addition to the constraints corresponding to the measurement set, constraints corresponding to bounds of state variables are also involved, which enables the LP problem more efficient in rejecting bad data, even if they are associated with leverage-point measurements. Results of the proposed estimator on IEEE 39-bus system and a 24-bus EHV equivalent system of the southern Indian grid are presented for illustrative purpose.