51 resultados para SOLAR-CELL EFFICIENCIES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO/Si heterojunctions were fabricated by growing ZnO thin films on p-type Si (100) substrate by pulsed laser deposition without buffer layers. The crystallinity of the heterojunction was analyzed by high resolution X-ray diffraction and atomic force microscopy. The optical quality of the film was analyzed by room temperature (RT) photoluminescence measurements. The high intense band to band emission confirmed the high quality of the ZnO thin films on Si. The electrical properties of the junction were studied by temperature dependent current-voltage measurements and RT capacitance-voltage (C-V) analysis. The charge carrier concentration and the barrier height (BH) were calculated, to be 5.6x10(19) cm(-3) and 0.6 eV respectively from the C-V plot. The BH and ideality factor, calculated using the thermionic emission (TE) model, were found to be highly temperature dependent. We observed a much lower value in Richardson constant, 5.19x10(-7)A/cm(2) K-2 than the theoretical value (32 A/cm(2) K-2) for ZnO. This analysis revealed the existence of a Gaussian distribution (GD) with a standard deviation of sigma(2)=0.035 V. By implementing the GD to the TE, the values of BH and Richardson constant were obtained as 1.3 eV and 39.97 A/cm(2) K-2 respectively from the modified Richardson plot. The obtained Richardson constant value is close to the theoretical value for n-ZnO. These high quality heterojunctions can be used for solar cell applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tin sulphide (SnS) quantum dots of size ranging from 2.4 to 14.4 nm are prepared by chemical precipitation method in aqueous media. Growth of the SnS particles is monitored by controlling the deposition time. Both XRD and SAED patterns confirm that the particles possess orthorhombic structure. The uncapped SnS particles showed secondary phases like Sn2S3 and SnS2 which is visible in the SAED pattern. From the electrochemical characterization. HOMO-LUMO levels of both TiO2 and SnS are determined and the band alignment is found to be favorable for electron transfer from SnS to TiO2. Moreover, the HOMO-LUMO levels varied for different particle sizes. Solar cell is fabricated by sensitizing porous TiO2 thin film with SnS QDs. Cell structure is characterized with and without buffer layer between FTO and TiO2. Without the buffer layer, cell showed an open circuit voltage (V-oc) of 504 mV and short circuit current density (J(sc)) of 2.3 mA/cm(2) under AM1.5 condition. The low fill factor of this structure (15%) is seen to be increased drastically to 51%, on the incorporation of the buffer layer. The cell characteristics are analyzed using two different size quantum dots. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electromagnetic field interactions with the composites made up of polyaniline (PANI) and single wall carbon nanotube (SWCNT) are simulated using the discrete dipole approximation. Recent observations on polymer nano-composites explain the interface interactions between the PANI host and the carbon nanostructures. These types of composite have potential applications in organic solar cell, gas sensor, bio-sensor and electro-chromic devices. Various nanostructures of PANI is possible in the form of nanowires, nanodisks, nanofibers and nanotubes have been reported. In the present study, we considered two types of composite, one is the PANI wrapped CNT and the other is CNT immersed in PANI nanotube. We use Modified Thole's parameters for calculating frequency dependent atomic polarizability of composites. Absorption spectra of the composites are studied by illuminating a wide range of electromagnetic energy spectrum. From the absorption spectra, we observe plasmon excitation in near-infrared region similar to that in SWCNTs reported recently. The interactions between the PANI and CNT in the composite, resulting electromagnetic absorptions are simulated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chalcopyrite Cu(In,Al)Se-2 (CIAS) thin films are grown on stainless steel substrate through one-step electrodeposition at room temperature. Indium is partially replaced with aluminum to increase the band gap of CuInSe2 without creating significant change in the original structure. The deposition potential is optimized at -0.8 V (vs. SCE) and annealing of the films is performed in vacuum to remove binary phases present in the as-deposited films. In/Al ratio is varied from 1/9 to 8/2, to find the suitability for solar cell fabrication. For In/Al ratio of less than 8/2, CuAlSe2 phase is formed in the film in addition to the CIAS phase. Depth profile X-ray photoelectron spectroscopy analysis of the CIAS sample prepared with In/Al ratio of 8/2 in the precursor solution confirmed the existence of single phase CIAS throughout the film. This film showed p-type conductivity while the rest of the samples with In/Al ratio less than 8/2 showed n-type conductivity. The band gap of the film varied from 1.06 to 1.45 eV, with variation in deposition potential. Structural, optical, morphological, compositional and electrical characterizations are carried out to establish the suitability of this film for solar cell fabrication. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Al:ZnO/Cu2SnS3 semiconductor heterojunction was fabricated. The structural and optical properties of the semiconductor materials were studied. The band offset at the Al:ZnO/Cu2SnS3 heterojunction was studied using X-ray photoelectron spectroscopy technique. From the measurement of the core level energies and valence band maximum of the constituent elements, the valence band offset was calculated to be -1.1 +/- 0.24 eV and the conduction band offset was 0.9 +/- 0.34 eV. The band alignment at the heterojunction was found to be of type-I. The study of Al:ZnO/Cu2SnS3 heterojunction is useful for solar cell applications. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the development and testing of an integrated low-power and low-cost dual-probe heat-pulse (DPHP) soil-moisture sensor in view of the electrical power consumed and affordability in developing countries. A DPHP sensor has two probes: a heater and a temperature sensor probe spaced 3 mm apart from the heater probe. Supply voltage of 3.3V is given to the heater-coil having resistance of 33 Omega power consumption of 330 mW, which is among the lowest in this category of sensors. The heater probe is 40 mm long with 2 mm diameter and hence is stiff enough to be inserted into the soil. The parametric finite element simulation study was performed to ensure that the maximum temperature rise is between 1 degrees C and 5 degrees C for wet and dry soils, respectively. The discrepancy between the simulation and experiment is less than 3.2%. The sensor was validated with white clay and tested with red soil samples to detect volumetric water-content ranging from 0% to 30%. The sensor element is integrated with low-power electronics for amplifying the output from thermocouple sensor and TelosB mote for wireless communication. A 3.7V lithium ion battery with capacity of 1150 mAh is used to power the system. The battery is charged by a 6V and 300 mA solar cell array. Readings were taken in 30 min intervals. The life-time of DPHP sensor node is around 3.6 days. The sensor, encased in 30 mm x 20 mm x 10 mm sized box, and integrated with electronics was tested independently in two separate laboratories for validating as well as investigating the dependence of the measurement of soil-moisture on the density of the soil. The difference in the readings while repeating the experiments was found out to be less than 0.01%. Furthermore, the effect of ambient temperature on the measurement of soil-moisture is studied experimentally and computationally. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation between the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow-both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface composition and depth profile studies of hemiplated thin film CdS:CuzS solar cells have been carried out using x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) techniques. These studies indicate that the junction is fairly diffused in the as-prepared cell. However, heat treatment of the cell at 210°C in air relatively sharpens the junction and improves the cell performance. Using the Cu(2p3p)/S(2p) ratio as well as the Cu(LVV)/(LMM) Auger intensity ratio, it can be inferred that the nominal valency of copper in the layers above the junction is Cut and it is essentially in the CUSS form. Copper signals are observed from layers deep down in the cell. These seem to appear mostly from the grain boundary region. From the observed concentration of Cd, Cu and S in these deeper layers and the Cu(LVV)/(LMM) ratio it appears that the signals from copper essentially originate partly from copper in CuS and partly from Cu2t trapped in the lattice. It is significant to note that the nominal valence state of copper changes rather abruptly from Cut to Cuz+ across the junction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since a majority of residential and industrial building hot water needs are around 50 degrees C, an integrated solar water heater could provide a bulk source that blends collection and storage into one unit. This paper describes the design, construction and performance test results of one such water-heating device. The test unit has an absorber area of 1.3 m(2) and can hold 1701 of water, of which extractable volume per day is 1001. Its performance was evaluated under various typical operating conditions. Every morning at about 7:00 a.m., 1001 of hot water were drawn from the sump and replaced with cold water from the mains. Although, during most of the days, the peak temperatures of water obtained are between 50 and 60 degrees C, the next morning temperatures were lower at 45-50 degrees C. Daytime collection efficiencies of about 60% and overall efficiencies of about 40% were obtained. Tests were conducted with and without stratification. Night radiation losses were reduced by use of a screen insulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile method of solution combustion was used to synthesize a new solid solution Bi2Ce2O7. The structure was determined from powder X-ray diffraction (PXRD) and found to crystallize in the space group Fm (3) over barm with cell parameter a = 5.46936(9) angstrom. The particle sizes varied from 5 to 6 nm. The degradation of cationic dye malachite green (MG) was investigated under solar radiation as the band gap of the material is 2.34 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells (DSSC) based on TiO2 nanoparticles for three different ratios of lithium iodide (LiI) and iodine (I-2) has been investigated. The electron transport properties and interfacial recombination kinetics have been evaluated by electrochemical impedance spectroscopy (EIS). It is found that increasing the concentration of lithium iodide for all ratios of iodine and lithium iodide decreases the open-circuit voltage (V-oc) whereas short circuit current density (J(sc)) and fill factor (FF) shows improvement. The reduction in V-oc and increment in J(sc) is ascribed to the higher concentration of absorptive Li+ cations which shifts the conduction band edge of TiO2 positively. The increase in FF is due to the reduction in electron transport resistance (R-omega) of the cell. In addition for all the ratios of LiI/I-2 increasing the concentration of I-2 decreases the V-oc which is attributed to the increased recombination with tri-iodide ions (I-3(-)) as verified from the low recombination resistance (R-k) and electron lifetime (tau) values obtained by EIS analysis. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of renewable energy through photocatalysis is an attractive option to utilize the abundantly available solar radiation for a sustainable future. Photocatalysis refers to charge-carrier, i.e. electron and hole, mediated reactions occurring on a semiconductor surface in presence of ultraviolet or visible light radiation. Photocatalysis is a well established advanced oxidation technique for the decontamination of toxic organic pollutants to CO2 and H2O. However, the generation of energy in the form of hydrogen, hydrocarbon fuels and electricity via photocatalysis is an upcoming field with great many technical challenges towards practical implementation. This review will describe the fundamental reaction mechanism of (i) photocatalytic water splitting, (ii) photocatalytic H-2 generation in presence of different sacrificial agents, (iii) H-2 and electricity generation in a photofuel cell, (iv) photocatalytic reduction of CO2 to hydrocarbons and useful chemicals, and (v) photocatalytic water-gas shift reaction. A historic and recent perspective of the above conversion techniques, especially with regard to the development of TiO2-based and non-TiO2 materials is provided. The activity of different materials for the above reactions based on quantifiers like reaction rate, quantum yield and incident-photon-to-current efficiency is compared, and key design considerations of the ``best'' photocatalyst or photoelectrode is outlined. An overall assessment of the research area indicates that the presently achieved quantum efficiencies for the above reactions are rather moderate in the visible region, and the goal is to develop a catalyst that absorbs visible radiation, provides good charge-carrier separation, and exhibits high stability for long periods of usage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved.