118 resultados para Rotating shifts
Resumo:
A method is presented to obtain stresses and displacements in rotating disks by taking into account the effect of out-of-plane restraint conditions at the hub. The stresses and displacements are obtained in a non-dimensional form, presented in the form of graphs and compared with the generalized plane stress solution.
Resumo:
For the purposes of obtaining a number of components with nearly identical thickness distributions over the substrate area and of minimizing the inhomogeneities of the film, it is logical to presume that a substrate rotating on its own axis and revolving around another axis will give more uniformity in film thickness than a substrate only revolving around one axis. In relation to the practical applications, an investigation has been undertaken to study the refinement that can be achieved by using a planar planetary substrate holder. It is shown theoretically that the use of the planetary substrate holder under ideal conditions of source and geometry does not offer any further improvement in uniformity of thickness over the conventional rotary work-holder. It is also shown that the geometrical parameters alone have little influence over the uniformity achieved on a planetary substrate, because of the complex cyclidal motion of any point on it. However, for any given geometry, a non-integral speed ratio of the planetary substrate and the work-holder shows considerably less variation in thickness over the substrate area.
Resumo:
Measurements of small phase shifts by double-exposure holographic interferometry are facilitated, and ambiguities in the sign of the phase shift eliminated, by introducing a background pattern of interference fringes. A simple and reliable optical system for this purpose utilizing a rotating wedge is described, with which fringes of any desired orientation and spacing can conveniently be obtained. It is shown how this system can be used under certain conditions for measurements of small mechanical deformations.
Resumo:
We apply our technique of using a Rb-stabilized ring-cavity resonator to measure the frequencies of various spectral components in the 555.8-nm 1S0-->3P1 line of Yb. We determine the isotope shifts with 60 kHz precision, which is an order-of-magnitude improvement over the best previous measurement on this line. There are two overlapping transitions, 171Yb(1/2-->3/2) and 173Yb(5/2-->3/2), which we resolve by applying a magnetic field. We thus obtain the hyperfine constants in the 3P1 state of the odd isotopes with a significantly improved precision. Knowledge of isotope shifts and hyperfine structure should prove useful for high-precision calculations in Yb necessary to interpret ongoing experiments testing parity and time-reversal symmetry violation in the laws of physics.
Time-dependent flows of rotating and stratified fluids in geometries with non-uniform cross-sections
Resumo:
Unsteady rotating and stratified flows in geometries with non-uniform cross-sections are investigated under Oseen approximation using Laplace transform technique. The solutions are obtained in closed form and they reveal that the flow remains oscillatory even after infinitely large time. The existence of inertial waves propagating in both positive and negative directions of the flow is observed. When the Rossby or Froude number is close to a certain infinite set of critical values the blocking and back flow occur and the flow pattern becomes more and more complicated with increasing number of stagnant zones when each critical value is crossed. The analogy that is observed in the solutions for rotating and stratified flows is also discussed.
Resumo:
The equations governing the flow of a steady rotating incompressible viscous fluid are expressed in intrinsic form along the vortex lines and their normals. Using these equations the effects of rotation on the geometric properties of viscous fluid flows are studied. A particular flow in which the vortex lines are right circular helices is discussed.
Resumo:
Here, we describe a novel FBG interrogation system in which FBGs are used as both sensing and reference elements. The reference FBGs is bonded to a mechanical flexure system having a linear amplification of 1:3.5, which is actuated using a piezo-actuator by applying a 0-150V ramp. The lengths of the reference gratings decide the maximum strain that can be applied to the reference grating, which in turn decides that strain range which can be interrogated. The main advantages of the present system are the on-line measurement of the wavelength shifts, small size, good sensitivity, multiplexing capability and low cost.
Resumo:
The effect of suction on the steady laminar incompressible boundarylayer flow for a stationary infinite disc with or without magnetic field, when the fluid at a large distance from the surface of the disc undergoes a solid body rotation, has been studied. The governing coupled nonlinear equations have been solved numerically using the shooting method with least square convergence criterion. It has been found that suction tends to reduce the velocity overshoot and damp the oscillation.
Resumo:
Abstract is not available.
Resumo:
The responses of the field mouse Mus booduga to shifts in schedules of LD cycles were monitored and the results were interpreted with the help of a PRC constructed for the same species. The results reveal that, M. booduga reentrained faster with a lesser number of transients after delay shifts than advance shifts, thus exhibiting “asymmetry effect.” A positive correlation was observed between the number of transients and the number of hours of shift. In most of the shifts, the sign of the transients (negative for delaying transients and positive for advancing transients) coincided with the direction of the shift. Interestingly, 11 and 12 h of advance shifting resulted in delaying transients. An 11-h advance shift can also be interpreted as a 13-h delay. Reentrainment through delaying transients is faster as compared to reentrainment through advancing transients. Thus, this animal might have taken a “shorter route,” as proved by the fact that an 11-h advance shift has evoked delaying transients. But a 13-h advance shift evoked only advancing transients. This prompts us to speculate that there may be a “phase jump” in M. booduga. Further, irrespective of whether L or D has been doubled in a 12-h shift, both evoked only delaying transients.
Resumo:
We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter 0.2 greater than or similar to alpha greater than or similar to 0.0005, flow behavior varies widely, particularly by means of the size of disk, efficiency of cooling and corresponding temperatures of ions and electrons. We also show that the disk around a rotating black hole is hotter compared to that around a Schwarzschild black hole, rendering a larger difference between ion and electron temperatures in the former case. With all the theoretical solutions in hand, finally we reproduce the observed luminosities (L) of two extreme cases-the under-fed AGNs and quasars (e.g. Sgr A') with L greater than or similar to 10(33) erg/s to ultra-luminous X-ray sources with L similar to 10(41) erg/s, at different combinations of mass accretion rate, ratio of specific heats, Shakura-Sunyaev viscosity parameter and Kerr parameter, and conclude that Sgr A' may be an intermediate spinning black hole.
Resumo:
We investigate viscous two-temperature accretion disc flows around rotating black holes. We describe the global solution of accretion flows with a sub-Keplerian angular momentum profile, by solving the underlying conservation equations including explicit cooling processes self-consistently. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. We focus on the set of solutions for sub-Eddington, Eddington and super-Eddington mass accretion rates around Schwarzschild and Kerr black holes with a Kerr parameter of 0.998. It is found that the flow, during its infall from the Keplerian to sub-Kepleria transition region to the black hole event horizon, passes through various phases of advection: the general advective paradigm to the radiatively inefficient phase, and vice versa. Hence, the flow governs a much lower electron temperature similar to 10(8)-10(9.5) K, in the range of accretion rate in Eddington units 0.01 less than or similar to (M) over dot less than or similar to 100, compared to the hot protons of temperature similar to 10(10.2)-10(11.8) K. Therefore, the solution may potentially explain the hard X-rays and gamma-rays emitted from active galactic nuclei (AGNs) and X-ray binaries. We then compare the solutions for two different regimes of viscosity. We conclude that a weakly viscous flow is expected to be cooling dominated, particularly at the inner region of the disc, compared to its highly viscous counterpart, which is radiatively inefficient. With all the solutions in hand, we finally reproduce the observed luminosities of the underfed AGNs and quasars (e. g. Sgr A*) to ultraluminous X-ray sources (e. g. SS433), at different combinations of input parameters, such as the mass accretion rate and the ratio of specific heats. The set of solutions also predicts appropriately the luminosity observed in highly luminous AGNs and ultraluminous quasars (e. g. PKS 0743-67).
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates the use of Genetic Programming (GP) to create an approximate model for the non-linear relationship between flexural stiffness, length, mass per unit length and rotation speed associated with rotating beams and their natural frequencies. GP, a relatively new form of artificial intelligence, is derived from the Darwinian concept of evolution and genetics and it creates computer programs to solve problems by manipulating their tree structures. GP predicts the size and structural complexity of the empirical model by minimizing the mean square error at the specified points of input-output relationship dataset. This dataset is generated using a finite element model. The validity of the GP-generated model is tested by comparing the natural frequencies at training and at additional input data points. It is found that by using a non-dimensional stiffness, it is possible to get simple and accurate function approximation for the natural frequency. This function approximation model is then used to study the relationships between natural frequency and various influencing parameters for uniform and tapered beams. The relations obtained with GP model agree well with FEM results and can be used for preliminary design and structural optimization studies.