47 resultados para River sediments
Resumo:
The Silicate Weathering Rate (SWR) and associated Carbon dioxide Consumption Rate (CCR) in tropical silicate terrain is assessed through a study of the major ion chemistry in a small west flowing river of Peninsular India, the Nethravati River. The specific features of the river basin are high mean annual rainfall and temperature, high runoff and a Precambrian basement composed of granitic-gneiss, charnockite and minor metasediments. The water samples (n = 56) were collected from three locations along the Nethravati River and from two of its tributaries over a period of twelve months. Chemical Weathering Rate (CWR) for the entire watershed is calculated by applying rainwater correction using river chloride as a tracer. Chemical Weathering Rate in the Nethravati watershed is estimated to 44 t.km(-2).y(-1) encompassing a SWR of 42 t.km(-2).y(-1) and a maximum carbonate contribution of 2 t.km(-2).y(-1). This SWR is among the highest reported for granito-gneissic terrains. The assessed CCR is 2.9 . 10(5) mol.km(-2).y(-1). The weathering index (Re). calculated from molecular ratios of dissolved cations and silica in the river, suggests an intense silicate weathering leading to kaolinite-gibbsite precipitation in the weathering covers. The intense SWR and CCR could be due to the combination of high runoff and temperature along with the thickness and nature of the weathering cover. The comparison of silicate weathering fluxes with other watersheds reveals that under similar morpho-climatic settings basalt weathering would be 2.5 times higher than the granite-gneissic rocks. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A hydrological modelling framework was assembled to simulate the daily discharge of the Mandovi River on the Indian west coast. Approximately 90% of the west-coast rainfall, and therefore discharge, occurs during the summer monsoon (June-September), with a peak during July-August. The modelling framework consisted of a digital elevation model (DEM) called GLOBE, a hydrological routing algorithm, the Terrestrial Hydrological Model with Biogeochemistry (THMB), an algorithm to map the rainfall recorded by sparse rain-gauges to the model grid, and a modified Soil Conservation Service Curve Number (SCS-CN) method. A series of discharge simulations (with and without the SCS method) was carried out. The best simulation was obtained after incorporating spatio-temporal variability in the SCS parameters, which was achieved by an objective division of the season into five regimes: the lean season, monsoon onset, peak monsoon, end-monsoon, and post-monsoon. A novel attempt was made to incorporate objectively the different regimes encountered before, during and after the Indian monsoon, into a hydrological modelling framework. The strength of our method lies in the low demand it makes on hydrological data. Apart from information on the average soil type in a region, the entire parameterization is built on the basis of the rainfall that is used to force the model. That the model does not need to be calibrated separately for each river is important, because most of the Indian west-coast basins are ungauged. Hence, even though the model has been validated only for the Mandovi basin, its potential region of application is considerable. In the context of the Prediction in Ungauged Basins (PUB) framework, the potential of the proposed approach is significant, because the discharge of these (ungauged) rivers into the eastern Arabian Sea is not small, making them an important element of the local climate system.
Resumo:
This paper discusses the use of Jason-2 radar altimeter measurements to estimate the Ganga-Brahmaputra surface freshwater flux into the Bay of Bengal for the period mid-2008 to December 2011. A previous estimate was generated for 1993-2008 using TOPEX-Poseidon, ERS-2 and ENVISAT, and is now extended using Jason-2. To take full advantages of the new availability of in situ rating curves, the processing scheme is adapted and the adjustments of the methodology are discussed here. First, using a large sample of in situ river height measurements, we estimate the standard error of Jason-2-derived water levels over the Ganga and the Brahmaputra to be respectively of 0.28 m and 0.19 m, or less than similar to 4% of the annual peak-to-peak variations of these two rivers. Using the in situ rating curves between water levels and river discharges, we show that Jason-2 accurately infers Ganga and Brahmaputra instantaneous discharges for 2008-2011 with mean errors ranging from similar to 2180 m(3)/s (6.5%) over the Brahmaputra to similar to 1458 m(3)/s (13%) over the Ganga. The combined Ganga-Brahmaputra monthly discharges meet the requirements of acceptable accuracy (15-20%) with a mean error of similar to 16% for 2009-2011 and similar to 17% for 1993-2011. The Ganga-Brahmaputra monthly discharge at the river mouths is then presented, showing a marked interannual variability with a standard deviation of similar to 12500 m(3)/s, much larger than the data set uncertainty. Finally, using in situ sea surface salinity observations, we illustrate the possible impact of extreme continental freshwater discharge event on the northern Bay of Bengal as observed in 2008.
Resumo:
Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the TungaBhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC-HMS 3.4) is used for the hydrological modelling of the study area. Linear-regression-based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub-basins of the study area. The large-scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 20112040, 20412070, and 20712099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub-basins in the study area.
Resumo:
A detalied study of the maonthly Convery river flows at the krishna raja sagara (KRS) reservoir is carried out by using the techniques of spectral analysis. The correlogram and power spectrum ate platted and used to identify the peridiocities inherent in the monthly inflows. The statistical significance of these periodicities is tested. Apart from the periodiocities at 12 months and 6 months, a significant of periodicity of 4 month was also observed in the monthly inflows. The analysis prepares ground for developing an appropriate stochastic model for the item series of the monthly flows.
Resumo:
Recession flows in a basin are controlled by the temporal evolution of its active drainage network (ADN). The geomorphological recession flow model (GRFM) assumes that both the rate of flow generation per unit ADN length (q) and the speed at which ADN heads move downstream (c) remain constant during a recession event. Thereby, it connects the power law exponent of -dQ/dt versus Q (discharge at the outlet at time t) curve, , with the structure of the drainage network, a fixed entity. In this study, we first reformulate the GRFM for Horton-Strahler networks and show that the geomorphic ((g)) is equal to D/(D-1), where D is the fractal dimension of the drainage network. We then propose a more general recession flow model by expressing both q and c as functions of Horton-Strahler stream order. We show that it is possible to have = (g) for a recession event even when q and c do not remain constant. The modified GRFM suggests that is controlled by the spatial distribution of subsurface storage within the basin. By analyzing streamflow data from 39 U.S. Geological Survey basins, we show that is having a power law relationship with recession curve peak, which indicates that the spatial distribution of subsurface storage varies across recession events. Key Points The GRFM is reformulated for Horton-Strahler networks. The GRFM is modified by allowing its parameters to vary along streams. Sub-surface storage distribution controls recession flow characteristics.
Resumo:
The ubiquity of the power law relationship between dQ/dt and Q for recession periods (-dQ/dt kQ(alpha); Q being discharge at the basin outlet at time t) clearly hints at the existence of a dominant recession flow process that is common to all real basins. It is commonly assumed that a basin, during recession events, functions as a single phreatic aquifer resting on a impermeable horizontal bed or the Dupuit-Boussinesq (DB) aquifer, and with time different aquifer geometric conditions arise that give different values of alpha and k. The recently proposed alternative model, geomorphological recession flow model, however, suggests that recession flows are controlled primarily by the dynamics of the active drainage network (ADN). In this study we use data for several basins and compare the above two contrasting recession flow models in order to understand which of the above two factors dominates during recession periods in steep basins. Particularly, we do the comparison by selecting three key recession flow properties: (1) power law exponent alpha, (2) dynamic dQ/dt-Q relationship (characterized by k) and (3) recession timescale (time period for which a recession event lasts). Our observations suggest that neither drainage from phreatic aquifers nor evapotranspiration significantly controls recession flows. Results show that the value of a and recession timescale are not modeled well by DB aquifer model. However, the above mentioned three recession curve properties can be captured satisfactorily by considering the dynamics of the ADN as described by geomorphological recession flow model, possibly indicating that the ADN represents not just phreatic aquifers but the organization of various sub-surface storage systems within the basin. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Non-pedogenic carbonates, such as carbonate cement and nodules in the sandstones, are quite common in the terrestrial geological record. Unlike pedogenic carbonates, their stable isotope ratios lack investigations for paleo-climatic reconstructions. The present investigation therefore, explores the possibility of use of stable isotope studies of non-pedogenic carbonates from the Mb-Pleistocene Siwalik Group of sediments exposed in the Ramnagar sub-basin of the NW Himalaya. Petrographic studies reveal the dominance of micrite fabric in carbonate nodules both of pedogenic and non-pedogenic samples irrespective of specific stratigraphic unit However, calcite as cement in the sandstones shows the dominance of micrite fabric in the younger in age sediments. Seventy-two non-pedogenic carbonate samples from the carbonate nodules and cement in the Siwalik sandstones, ranging in age between similar to 1 Ma and 12.2 Ma, were analyzed for delta C-13 and delta O-18 values. The delta C-13 values vary from -24.77 parts per thousand to -1.1 parts per thousand and delta O-18 values vary from -15.34 parts per thousand to -7.81 parts per thousand. Pedogenic and non-pedogenic carbonates ranging in age between similar to 1 Ma and 6 Ma have largely similar delta C-13 values and the range of delta C-13 values indicate the dominance of C-4 type of vegetation. However, unlike pedogenic carbonates which showed the dominance of C-3 type of vegetation pre- 7 Ma on the basis of delta C-13 -depleted isotopic values (Singh et al., 2011), delta C-13 values are largely enriched in the corresponding aged non-pedogenic carbonates revealing no information on specific type of vegetation. Likewise, paleoprecipitational reconstructions from delta O-18 values in pedogenic carbonates showed a progressive increase in aridity from similar to 12 Ma to recent excluding short term increases in rainfall/monsoon intensity at around 10 Ma, 5 Ma, and 1.8 Ma (Singh et al., 2012). On the contrary, such reconstructions are not possible from the delta O-18 values of non-pedogenic carbonates and indeed the delta O-18 values of non-pedogenic carbonates are largely depleted to as much as 6 parts per thousand from the corresponding pedogenic carbonates. Such differences in delta C-13 and delta O-18 values of non-pedogenic carbonates from pedogenic carbonates are primarily due to the dependence of the former on groundwater conditions responsible for precipitating carbonate. Further, a comparison of isotopic values between non-pedogenic and pedogenic carbonates can be interpreted that post-6 Ma and pre-6 Ma non-pedogenic carbonates were largely formed by shallow and deep groundwater conditions respectively. The result of these investigative studies therefore, suggests that the stable delta C-13 and delta O-18 values of non-pedogenic carbonates, unlike the pedogenic carbonates and irrespective of nature of calcite fabric, showed their little importance in paleoclimatic and paleoecological reconstructions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A variety of methods are available to estimate future solar radiation (SR) scenarios at spatial scales that are appropriate for local climate change impact assessment. However, there are no clear guidelines available in the literature to decide which methodologies are most suitable for different applications. Three methodologies to guide the estimation of SR are discussed in this study, namely: Case 1: SR is measured, Case 2: SR is measured but sparse and Case 3: SR is not measured. In Case 1, future SR scenarios are derived using several downscaling methodologies that transfer the simulated large-scale information of global climate models to a local scale ( measurements). In Case 2, the SR was first estimated at the local scale for a longer time period using sparse measured records, and then future scenarios were derived using several downscaling methodologies. In Case 3: the SR was first estimated at a regional scale for a longer time period using complete or sparse measured records of SR from which SR at the local scale was estimated. Finally, the future scenarios were derived using several downscaling methodologies. The lack of observed SR data, especially in developing countries, has hindered various climate change impact studies. Hence, this was further elaborated by applying the Case 3 methodology to a semi-arid Malaprabha reservoir catchment in southern India. A support vector machine was used in downscaling SR. Future monthly scenarios of SR were estimated from simulations of third-generation Canadian General Circulation Model (CGCM3) for various SRES emission scenarios (A1B, A2, B1, and COMMIT). Results indicated a projected decrease of 0.4 to 12.2 W m(-2) yr(-1) in SR during the period 2001-2100 across the 4 scenarios. SR was calculated using the modified Hargreaves method. The decreasing trends for the future were in agreement with the simulations of SR from the CGCM3 model directly obtained for the 4 scenarios.
Resumo:
Terrestrial water storage (TWS) plays a key role in the global water cycle and is highly influenced by climate variability and human activities. In this study, monthly TWS, rainfall and Ganga-Brahmaputra river discharge (GBRD) are analysed over India for the period of 2003-12 using remote sensing satellite data. The spatial pattern of mean TWS shows a decrease over a large and populous region of Northern India comprising the foothills of the Himalayas, the Indo-Gangetic Plains and North East India. Over this region, the mean monthly TWS exhibits a pronounced seasonal cycle and a large interannual variability, highly correlated with rainfall and GBRD variations (r > 0.8) with a lag time of 2 months and 1 month respectively. The time series of monthly TWS shows a consistent and statistically significant decrease of about 1 cm year(-1) over Northern India, which is not associated with changes in rainfall and GBRD. This recent change in TWS suggests a possible impact of rapid industrialization, urbanization and increase in population on land water resources. Our analysis highlights the potential of the Earth-observation satellite data for hydrological applications.
Resumo:
Models of river flow time series are essential in efficient management of a river basin. It helps policy makers in developing efficient water utilization strategies to maximize the utility of scarce water resource. Time series analysis has been used extensively for modeling river flow data. The use of machine learning techniques such as support-vector regression and neural network models is gaining increasing popularity. In this paper we compare the performance of these techniques by applying it to a long-term time-series data of the inflows into the Krishnaraja Sagar reservoir (KRS) from three tributaries of the river Cauvery. In this study flow data over a period of 30 years from three different observation points established in upper Cauvery river sub-basin is analyzed to estimate their contribution to KRS. Specifically, ANN model uses a multi-layer feed forward network trained with a back-propagation algorithm and support vector regression with epsilon intensive-loss function is used. Auto-regressive moving average models are also applied to the same data. The performance of different techniques is compared using performance metrics such as root mean squared error (RMSE), correlation, normalized root mean squared error (NRMSE) and Nash-Sutcliffe Efficiency (NSE).
Resumo:
Systematic monitoring of subsurface hydrogeochemistry has been carried out for a period of one year in a humid tropical region along the Nethravati-Gurupur River. The major ion and stable isotope (delta O-18 and delta H-2) compositions are used to understand the hydrogeochemistry of groundwater and its interaction with surface water. In the study, it is observed that intense weathering of source rocks is the major source of chemical elements to the surface and subsurface waters. In addition, agricultural activities and atmospheric contributions also control the major ion chemistry of water in the study area. There is a clear seasonality in the groundwater chemistry, which is related to the recharge and discharge of the hydrological system. On a temporal scale, there is a decrease in major cation concentrations during the monsoon which is a result of dilution of sources from the weathering of rock minerals, and an increase in anion concentrations which is contributed by the atmosphere, accompanied by an increase in water level during the monsoon. The stable isotope composition indicates that groundwater in the basin is of meteoric origin and recharged directly from the local precipitation during the monsoonal season. Soon after the monsoon, groundwater and surface water mix in the subsurface region. The groundwater feeds the surface water during the lean river flow season.
Resumo:
Probable maximum precipitation (PMP) is a theoretical concept that is widely used by hydrologists to arrive at estimates for probable maximum flood (PMF) that find use in planning, design and risk assessment of high-hazard hydrological structures such as flood control dams upstream of populated areas. The PMP represents the greatest depth of precipitation for a given duration that is meteorologically possible for a watershed or an area at a particular time of year, with no allowance made for long-term climatic trends. Various methods are in use for estimation of PMP over a target location corresponding to different durations. Moisture maximization method and Hershfield method are two widely used methods. The former method maximizes the observed storms assuming that the atmospheric moisture would rise up to a very high value estimated based on the maximum daily dew point temperature. On the other hand, the latter method is a statistical method based on a general frequency equation given by Chow. The present study provides one-day PMP estimates and PMP maps for Mahanadi river basin based on the aforementioned methods. There is a need for such estimates and maps, as the river basin is prone to frequent floods. Utility of the constructed PMP maps in computing PMP for various catchments in the river basin is demonstrated. The PMP estimates can eventually be used to arrive at PMF estimates for those catchments. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Rivers of the world discharge about 36000 km 3 of freshwater into the ocean every year. To investigate the impact of river discharge on climate, we have carried out two 100 year simulations using the Community Climate System Model (CCSM3), one including the river runoff into the ocean and the other excluding it. When the river discharge is shut off, global average sea surface temperature (SST) rises by about 0.5 degrees C and the Indian Summer Monsoon Rainfall (ISMR) increases by about 10% of the seasonal total with large increase in the eastern Bay of Bengal and along the west coast of India. In addition, the frequency of occurrence of La Nina-like cooling events in the equatorial Pacific increases and the correlation between ISMR and Pacific SST anomalies become stronger. The teleconnection between the SST anomalies in the Pacific and monsoon is effected via upper tropospheric meridional temperature gradient and the North African-Asian Jet axis.
Resumo:
The present study focuses prudent elucidation of microbial pollution and antibiotic sensitivity profiling of the fecal coliforms isolated from River Cauvery, a major drinking water source in Karnataka, India. Water samples were collected from ten hotspots during the year 2011-2012. The physiochemical characteristics and microbial count of water samples collected from most of the hotspots exhibited greater biological oxygen demand and bacterial count especially coliforms in comparison with control samples (p <= 0.01). The antibiotic sensitivity testing was performed using 48 antibiotics against the bacterial isolates by disk-diffusion assay. The current study showed that out of 848 bacterial isolates, 93.51 % (n=793) of the isolates were found to be multidrug-resistant to most of the current generation antibiotics. Among the major isolates, 96.46 % (n=273) of the isolates were found to be multidrug-resistant to 30 antibiotics and they were identified to be Escherichia coli by 16S rDNA gene sequencing. Similarly, 93.85 % (n=107), 94.49 % (n=103), and 90.22 % (n=157) of the isolates exhibited multiple drug resistance to 32, 40, and 37 antibiotics, and they were identified to be Enterobacter cloacae, Pseudomonas trivialis, and Shigella sonnei, respectively. The molecular studies suggested the prevalence of blaTEM genes in all the four isolates and dhfr gene in Escherichia coli and Sh. sonnei. Analogously, most of the other Gram-negative bacteria were found to be multidrug-resistant and the Gram-positive bacteria, Staphylococcus spp. isolated from the water samples were found to be methicillin and vancomycin-resistant Staphylococcus aureus. This is probably the first study elucidating the bacterial pollution and antibiotic sensitivity profiling of fecal coliforms isolated from River Cauvery, Karnataka, India.