66 resultados para Rhode, J. G. (Johann Gottlieb), 1762-1827


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, C28H21O4P, the eight-membered heterocyclic dioxaphosphocine ring has a distorted boat conformation, with the phosphoryl O atom axial and the phenoxy group equatorial. The P=O distance is 1.451 (1) Angstrom and the average length of the three P-O bonds is 1.573 (1) Angstrom. The phenyl ring is nearly perpendicular to both naphthalene planes, making dihedral angles of 91.30 (3) and 97.65 (5)degrees with them. The angle between the two naphthalene planes is 67.73 (3)degrees. The crystal structure is stabilized by van der Waals interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antiparallel intramolecular G quartet structure for the 3.5 copy Oxytricha telomeric sequence d(G(4)T(4))(3)G4 has been established using a combination of spectroscopic and chemical probing methods. In the presence of Naf ions, this sequence exhibits a circular dichroism spectrum with a positive band at 295 nm and a negative band around 265 nm, characteristic of an antiparallel G quartet structure. Further, we show that d(G(4)T(4))(3)G(4) adopts an antiparallel intramolecular G quartet structure even in K+ unlike d(G(4)T(4)G(4)). KMnO4 probing experiments indicated the existence of intra and interloop interactions in the Na+ induced structure. We have found that K+ not only increases the thermal stability of,G quartet structure but also binds to the loop region and disrupts stacking and interloop interactions. Biological consequences of such cation-dependent conformational micro-heterogeneity in the loop region of G quartet structures is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the origin of de-enhancement for a number of vibrational modes in the 2(1)A(g) excited state of trans-azobenzene. We have used the time-dependent wave packet analysis of the RR intensities by including the multimode damping effects in the calculation. This avoids the use of unrealistically large values for the damping parameter. It is concluded that the de-enhancement is caused by the interference between the two uncoupled electronic states, and that the intensities observed under the so-called symmetry forbidden 2(1)A(g) <-- 1(1)A(g) transition are purely due to resonance excitation. It is also observed that the use of the time-dependent approach to study the de-enhancement effects caused by multiple electronic states on the RR intensities is not necessarily useful if one is interested in the structural dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of Pd ion-substituted CeO2-ZrO2 solid solutions were synthesized using the solution combustion technique. H2O2-assisted degradation of orange G was carried out in the presence of the catalysts. The activity of the catalysts was found to increase with the introduction of the second component in the solid solution, as signified by an increase in the rate constants and lowering of activation energy. The study showed the involvement of lattice oxygen and the importance of reducibility of the compound for the reaction. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard Gibbs free energy of formation of magnesium and cadmiumchromites have been determined by potentiometric measurements on reversiblesolid-state electrochemical cells [dformula (Au-5%Cd, , Au-5%Cd; Pt, + , CaO-ZrO[sub 2], + ,Pt; CdO, , CdCr[sub 2]O[sub 4] + Cr[sub 2]O[sub 3])] in the temperature range 500°–730°C, and [dformula Pt, Cr + Cr[sub 2]O[sub 3]/Y[sub 2]O[sub 3]-ThO[sub 2]/Cr + MgCr[sub 2]O[sub 4] + MgO, Pt] in the temperature range 800°–1200°C. The temperature dependence of the freeenergies of formation of the ternary compounds can be represented by theequations [dformula CdO(r.s.) + Cr[sub 2]O[sub 3](cor) --> CdCr[sub 2]O[sub 4](sp)] [dformula Delta G[sup 0] = - 42,260 + 7.53T ([plus-minus]400) J] and [dformula MgO(r.s.) + Cr[sub 2]O[sub 3](cor) --> MgCr[sub 2]O[sub 4](sp)] [dformula Delta G[sup 0] = - 45,200 + 5.36T ([plus-minus]400) J] The entropies of formation of these spinels are discussed in terms of cationdisorder and extent of reduction of Cr3+ ions to Cr2+ ions. Thermodynamicdata on the chromates of cadmium and magnesium are derived by combiningthe results obtained in this study with information available in the literatureon high temperature, high pressure phase equilibria in the systems CdO-Cr2O3-O2 and MgO-Cr2O3-O2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme telomerase synthesizes the G-rich DNA strands of the telomere and its activity is often associated with cancer. The telomerase may be therefore responsible for the ability of a cancer cell-to escape apoptosis. The G-rich DNA sequences often adopt tetra-stranded structure, known as the G-quadruplex DNA (G4-DNA). The stabilization of the telomeric DNA into the G4-DNA structures by small molecules has been the focus of many researchers for the design and development of new anticancer agents. The compounds which stabilize the G-quadruplex in the telomere inhibit the telomerase activity. Besides telomeres, the G4-DNA forming sequences are present in the genomic regions of biological significance including the transcriptional regulatory and promoter regions of several oncogenes. Inducing a G-quadruplex structure within the G-rich promoter sequences is a potential way of achieving selective gene regulation. Several G-quadruplex stabilizing ligands are known. Minor groove binding ligands (MGBLs) interact with the double-helical DNA through the minor grooves sequence-specifically and interfere with several DNA associated processes. These MGBLs when suitably modified switch their preference sometimes from the duplex DNA to G4-DNA and stabilize the G4-DNA as well. Herein, we focus on the recent advances in understanding the G-quadruplex structures, particularly made by the human telomeric ends, and review the results of various investigations of the interaction of designed organic ligands with the G-quadruplex DNA while highlighting the importance of MGBL-G-quadruplex interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligand-induced stabilization of G-quadruplex structures formed by the human telomeric DNA is an active area of research. The compounds which stabilize the G-quadruplexes often lead to telomerase inhibition. Herein we present the results of interaction of new monomeric and dimeric ligands having 1,3-phenylene-bis(piperazinyl benzimidazole) unit with G-quadruplex DNA (G4DNA) formed by human telomeric repeat d(G(3)T(2)A)(3)G(3)]. These ligands efficiently stabilize the preformed G4DNA in the presence of 100 mM monovalent alkali metal ions. Also, the G4DNA formed in the presence of low concentrations of ligands in 100 mM K+ adopts a highly stable parallel-stranded conformation. The G-quadruplexes formed in the presence of the dimeric compound are more stable than that induced by the corresponding monomeric counterpart. The dimeric ligands having oligo-oxyethylene spacers provide much higher stability to the preformed G4DNA and also exert significantly higher telomerase inhibition activity. Computational aspects have also been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA is the chemotherapeutic target for treating diseases of genetic origin. Besides well-known double-helical structures (A, B, Z, parallel stranded-DNA etc.), DNA is capable of forming several multi-stranded structures (triplex, tetraplex, i-motif etc.) which have unique biological significance. The G-rich 3'-ends of chromosomes, called telomeres, are synthesized by telomerase, a ribonucleoprotein, and over-expression of telomerase is associated with cancer. The activity of telomerase is suppressed if the G-rich region is folded into the four stranded structures, called G-quadruplexes (G4-DNAs) using small synthetic ligands. Thus design and synthesis of new G4-DNA ligands is an attractive strategy to combat cancer. G4-DNA forming sequences are also prevalent in other genomic regions of biological significance including promoter regions of several oncogenes. Effective gene regulation may be achieved by inducing a G4-DNA structure within the G-rich promoter sequences. To date, several G4-DNA stabilizing ligands are known. DNA groove binders interact with the duplex B-DNA through the grooves (major and minor groove) in a sequence-specific manner. Some of the groove binders are known to stabilize the G4-DNA. However, this is a relatively under explored field of research. In this review, we focus on the recent advances in the understanding of the G4-DNA structures, particularly made from the human telomeric DNA stretches. We summarize the results of various investigations of the interaction of various organic ligands with the G4-DNA while highlighting the importance of groove binder-G4-DNA interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of anticancer agents that act via stabilization of telomeric G-quadruplex DNA (G4DNA) is important because such agents often inhibit telomerase activity. Several types of G4DNA binding ligands are known. In these studies, the target structures often involve a single G4 DNA unit formed by short DNA telomeric sequences. However, the 3'-terminal single-stranded human telomeric DNA can form higher-order structures by clustering consecutive quadruplex units (dimers or nmers). Herein, we present new synthetic gemini (twin) bisbenzimidazole ligands, in which the oligo-oxyethylene spacers join the two bisbenzimidazole units for the recognition of both monomeric and dimeric G4DNA, derived from d(T2AG3)4 and d(T2AG3) 8 human telomeric DNA, respectively. The spacer between the two bisbenzimidazoles in the geminis plays a critical role in the G4DNA stability. We report here (i) synthesis of new effective gemini anticancer agents that are selectively more toxic towards the cancer cells than the corresponding normal cells; (ii) formation and characterization of G4DNA dimers in solution as well as computational construction of the dimeric G4DNA structures. The gemini ligands direct the folding of the single-stranded DNA into an unusually stable parallel-stranded G4DNA when it was formed in presence of the ligands in KCl solution and the gemini ligands show spacer length dependent potent telomerase inhibition properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic alterations like point mutations, insertions, deletions, inversions and translocations are frequently found in cancers. Chromosomal translocations are one of the most common genomic aberrations associated with nearly all types of cancers especially leukemia and lymphoma. Recent studies have shown the role of non-B DNA structures in generation of translocations. In the present study, using various bioinformatic tools, we show the propensity of formation of different types of altered DNA structures near translocation breakpoint regions. In particular, we find close association between occurrence of G-quadruplex forming motifs and fragile regions in almost 70% of genes involved in rearrangements in lymphoid cancers. However, such an analysis did not provide any evidence for the occurrence of G-quadruplexes at the close vicinity of translocation breakpoint regions in nonlymphoid cancers. Overall, this study will help in the identification of novel non-B DNA targets that may be responsible for generation of chromosomal translocations in cancer. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligand-induced stabilization of the G-quadruplex DNA structure derived from the single-stranded 3'-overhang of the telomeric DNA is an attractive strategy for the inhibition of the telomerase activity. The agents that can induce/stabilize a DNA sequence into a G-quadruplex structure are therefore potential anticancer drugs. Herein we present the first report of the interactions of two novel bisbenzimidazoles (TBBz1 and TBBz2) based on Troger's base skeleton with the G-quadruplex DNA (G4DNA). These Troger's base molecules stabilize the G4DNA derived from a human telomeric sequence. Evidence of their strong interaction with the G4DNA has been obtained from CD spectroscopy, thermal denaturation, and UV-vis titration studies. These ligands also possess significantly higher affinity toward the G4DNA over the duplex DNA. The above results obtained are in excellent agreement with the biological activity, measured in vitro using a modified TRAP assay. Furthermore, the ligands are selectively more cytotoxic toward the cancerous cells than the corresponding noncancerous cells. Computational studies suggested that the adaptive scaffold might allow these ligands to occupy not only the G-quartet planes but also the grooves of the G4DNA.