153 resultados para Refinement of (SOR1NM2)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Copper exhibits high thermal conductivity properties and hence it is extensively used in cryogenic applications like cold fingers, heat exchangers, etc. During the realization of such components, copper undergoes various machining operations from the raw material stage to the final component. During these machining processes, stresses are induced within the metal resulting in internal stresses, strains and dislocations. These effects build up resistance paths for the heat carriers which transfer heat from one location to the other. This in turn, results in reduction of thermal conductivity of the conducting metal and as a result the developed component will not perform as per expectations. In the process of cryogenic treatment, the metal samples are exposed to cryogenic temperature for extended duration of time for 24 hours and later tempered. During this process, the internal stresses and strains are reduced with refinement of the atomic structure. These effects are expected to favourably improve thermal conductivity properties of the metal. In this experimental work, OFHC copper samples were cryotreated for 24 hours at 98 K and part of them were tempered at 423K for one hour. Significant enhancement of thermal conductivity values were observed after cryotreating and tempering the copper samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

More than 70 molecules of varied nature have been identified in the envelopes of carbon-rich stars through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals, and a significant number are unique to the circumstellar medium. The determination of relevant laboratory kinetics data is critical to keep up with the development of the high spectral and spatial resolution observations and of the refinement of chemical models. Neutralneutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures and deserve a detailed laboratory investigation. The approach we have developed aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high-enthalpy source with a flow tube and a pulsed laser photolysislaser-induced fluorescence system to probe the undergoing chemical reactions. The high-enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane (C3H8), propene (C3H6), allene (C3H4), 1,3-butadiene (1,3-C4H6), and 1-butyne (C4H6) over a temperature range extending from 300 to 1200 K. All studied reactions of CN with unsaturated hydrocarbons are rapid, with rate coefficients greater than 10-10 cm3 center dot molecule-1 center dot s-1 and exhibit slight negative temperature dependence above room temperature. (c) 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 753766, 2012

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Refinement of the internal grain size leads to strengthening by retarding dislocation motion. There have also been recent reports that a reduction in external diameter enhances the strength of single crystal pillars. Here we show, in a hitherto unexplored domain, a synergistic increase in strength by a combined reduction in internal (0.5 mu m) and external (20-50 mu m) dimensions, with strengths at failure approaching the theoretical value. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polycrystalline Ca0.18Sr0.226Ba0.594Nb2O6 (CSBN18) was synthesized via the solid-state reaction route. X-ray structural studies confirmed it belonged to the tetragonal tungsten bronze family. Rietveld refinement of the X-ray data has been carried out for CSBN18 where the atomic positions and site occupancy factors for A-sites have been determined. The dielectric properties of CSBN18 ceramic were studied as a function of temperature in the 100 Hz - 1 MHz frequency range. The dielectric relaxation followed the Vogel-Fulcher relation wherein E-a = 37.4 meV; T-f = 131.5 degrees C and omega(0) = 4.31 x 10(9) rad s(-1). A high pyroelectric coefficient of similar to 250 mu C m(-2).K was obtained around the transition temperature (similar to 150 degrees C). This is significantly higher than that reported for polycrystalline SrxBa1-xNb2O6 (SBN). However, the piezoelectric coefficient (d(33)) of the title composition was as low as 6 pC N-1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe the synthesis, crystal structures, and optical absorption spectra of transition metal substituted spiroffite derivatives, Zn2-xMxTe3O8 (M-II = Co, Ni, Cu; 0 < x <= 1.0). The oxides are readily synthesized by solid state reaction of stoichiometric mixtures of the constituent binaries at 620 degrees C. Reitveld refinement of the crystal structures from powder X-ray diffraction (XRD) data shows that the Zn/MO6 octahedra are strongly distorted, as in the parent Zn2Te3O8 structure, consisting of five relatively short Zn/M-II-O bonds (1.898-2.236 angstrom) and one longer Zn/M-II-O bond (2.356-2.519 angstrom). We have interpreted the unique colors and the optical absorption/diffuse reflectance spectra of Zn2-xMxTe3O8 in the visible, in terms of the observed/irregular coordination geometry of the Zn/M-II-O chromophores. We could not however prepare the fully substituted M2Te3O8 (M-II = Co, Ni, Cu) by the direct solid state reaction method. Density Functional Theory (DFT) modeling of the electronic structure of both the parent and the transition metal substituted derivatives provides new insights into the bonding and the role of transition metals toward the origin of color in these materials. We believe that transition metal substituted spiroffites Zn2-xMxTe3O8 reported here suggest new directions for the development of colored inorganic materials/pigments featuring irregular/distorted oxygen coordination polyhedra around transition metal ions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CrSi and Cr1-x Fe (x) Si particles embedded in a CrSi2 matrix have been prepared by hot pressing from CrSi1.9, CrSi2, and CrSi2.1 powders produced by ball milling using either WC or stainless steel milling media. The samples were characterized by powder X-ray diffraction, scanning, and transmission electron microscopy and electron microprobe analysis. The final crystallite size of CrSi2 obtained from the XRD patterns is about 40 and 80 nm for SS- and WC-milled powders, respectively, whereas the size of the second phase inclusions in the hot pressed samples is about 1-5 mu m. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, and figure of merit (ZT) were analyzed in the temperature range from 300 to 800 K. While the ball-milling process results in a lower electrical resistivity and thermal conductivity due to the presence of the inclusions and the refinement of the matrix microstructure, respectively, the Seebeck coefficient is negatively affected by the formation of the inclusions which leads to a modest improvement of ZT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BiEuO3 (BE) and BiGdO3 (BG) are synthesized by the solid-state reaction technique. Rietveld refinement of the X-ray diffraction data shows that the samples are crystallized in cubic phase at room temperature having Fm3m symmetry with the lattice parameters of 5.4925(2) and 5.4712(2) A for BE and BG, respectively. Raman spectra of the samples are investigated to obtain the phonon modes of the samples. The dielectric properties of the samples are investigated in the frequency range from 42 Hz to 1.1 MHz and in the temperature range from 303 K to 673 K. An analysis of the real and imaginary parts of impedance is performed assuming a distribution of relaxation times as confirmed by the Cole-Cole plots. The frequency-dependent maxima in the loss tangent are found to obey an Arrhenius law with activation energy similar to 1 eV for both the samples. The frequency-dependent electrical data are also analyzed in the framework of conductivity formalism. Magnetization of the samples are measured under the field cooled (EC) and zero field cooled (ZFC) modes in the temperature range from 5 K to 300 K applying a magnetic Field of 500 Oe. The FC and ZFC susceptibilities show that BE is a Van Vleck paramagnetic material with antiferromagnetic coupling at low temperature whereas BG is an anti-ferromagnetic system. The results are substantiated by the M-11 loops of the materials taken at 5 K in the ZFC mode. (C) 2014 Elsevier B.V. All rights reserved

Relevância:

90.00% 90.00%

Publicador:

Resumo:

FreeRTOS is an open-source real-time microkernel that has a wide community of users. We present the formal specification of the behaviour of the task part of FreeRTOS that deals with the creation, management, and scheduling of tasks using priority-based preemption. Our model is written in the Z notation, and we verify its consistency using the Z/Eves theorem prover. This includes a precise statement of the preconditions for all API commands. This task model forms the basis for three dimensions of further work: (a) the modelling of the rest of the behaviour of queues, time, mutex, and interrupts in FreeRTOS; (b) refinement of the models to code to produce a verified implementation; and (c) extension of the behaviour of FreeRTOS to multi-core architectures. We propose all three dimensions as benchmark challenge problems for Hoare's Verified Software Initiative.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, effect of pouring temperature (650 degrees C, 655 degrees C, and 660 degrees C) on semi-solid microstructure evolution of in-situ magnesium silicide (Mg2Si) reinforced aluminum (Al) alloy composite has been studied. The shear force exerted by the cooling slope during gravity driven flow of the melt facilitates the formation of near spherical primary Mg2Si and primary Al grains. Shear driven melt flow along the cooling slope and grain fragmentation have been identified as the responsible mechanisms for refinement of primary Mg2Si and Al grains with improved sphericity. Results show that, while flowing down the cooling slope, morphology of primary Mg2Si and primary Al transformed gradually from coarse dendritic to mixture of near spherical particles, rosettes, and degenerated dendrites. In terms of minimum grain size and maximum sphericity, 650 degrees C has been identified as the ideal pouring temperature for the cooling slope semi-solid processing of present Al alloy composite. Formation of spheroidal grains with homogeneous distribution of reinforcing phase (Mg2Si) improves the isotropic property of the said composite, which is desirable in most of the engineering applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of combined additions of Ca and Sb on the microstructure and tensile properties of AZ91D alloy fabricated by squeeze-casting have been investigated. For comparison, the same has also been studied with and without individual additions of Ca and Sb. The results indicate that both individual and combined additions refine the grain size and beta-Mg17Al12 phase, which is more pronounced with combined additions. Besides alpha-Mg and beta-Mg17Al12 phases, a new reticular Al2Ca and rod-shaped Mg3Sb2 phases are formed following individual additions of Ca and Sb in the AZ91D alloy. With combined additions, an additional Ca2Sb phase is formed suppressing Mg3Sb2 phase. Additions of both Ca and Sb increase yield strength (YS) at both ambient and elevated temperatures up to 200 degrees C. However, both ductility and ultimate tensile strength (UTS) decrease first up to 150 degrees C and then increase at 200 degrees C. The increase in YS is attributed to the refinement of grain size, whereas, ductility and UTS are deteriorated by the presence of brittle Al2Ca, Mg3Sb2 and Ca2Sb phases. The best tensile properties are obtained in the AZXY9110 alloy owing to the presence of lesser amount of brittle Al2Ca and Ca2Sb phases resulted from the optimum content of 1.0Ca and 0.3Sb (wt%). The fracture surface of the tensile specimen tested at ambient temperature reveals cleavage failure that changes to quasi-cleavage at 200 degrees C. The squeeze-cast alloys exhibited better tensile properties as compared to that of the gravity-cast alloys nullifying the detrimental effects of Ca and/or Sb additions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report structural, magnetic, and dielectric properties of the perovskite compound Pr1-xYxMnO3 (0.1 <= x <= 0.4) studied using dc magnetization, ac susceptibility, neutron powder diffraction, and dielectric techniques. These compounds crystallize in orthorhombic space group (Pnma) in the temperature range 5-300 K. The Mn-O-Mn bond angle decreases with the Y substitution along with an increase in the Jahn-Teller distortion. The Jahn-Teller distortion for Pr0.9Y0.1MnO3 shows an anomalous change near 50 K, below which it falls sharply. Neutron powder diffraction patterns of all reported compositions at low temperature constitute additional magnetic Bragg peaks that suggest magnetic ordering. Magnetic reflections were indexed in the nuclear lattice with the propagation vector k = (0, 0, 0). Rietveld refinement of powder patterns conform to A type antiferromagnetic ordering where moments are aligned ferromagnetically in a-c plane and coupled nearly antiferromagnetically along b-axis resulting in a net ferromagnetic component along the b-direction. The antiferromagnetic transition temperature was deduced from dc magnetization and ac susceptibility data. The transition temperature decreases by nearly 22 K (from 81 K to 59 K) as yttrium content (x) increases from 0.1 to 0.4. Measurements reveal strong frequency dispersion in dielectric constant and dielectric loss. Activation energy and relaxation time are estimated from the Arrhenius plot. It is further shown that relaxation behaviour is altered with yttrium doping concentration. (C) 2015 AIP Publishing LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The correctness of a hard real-time system depends its ability to meet all its deadlines. Existing real-time systems use either a pure real-time scheduler or a real-time scheduler embedded as a real-time scheduling class in the scheduler of an operating system (OS). Existing implementations of schedulers in multicore systems that support real-time and non-real-time tasks, permit the execution of non-real-time tasks in all the cores with priorities lower than those of real-time tasks, but interrupts and softirqs associated with these non-real-time tasks can execute in any core with priorities higher than those of real-time tasks. As a result, the execution overhead of real-time tasks is quite large in these systems, which, in turn, affects their runtime. In order that the hard real-time tasks can be executed in such systems with minimal interference from other Linux tasks, we propose, in this paper, an integrated scheduler architecture, called SchedISA, which aims to considerably reduce the execution overhead of real-time tasks in these systems. In order to test the efficacy of the proposed scheduler, we implemented partitioned earliest deadline first (P-EDF) scheduling algorithm in SchedISA on Linux kernel, version 3.8, and conducted experiments on Intel core i7 processor with eight logical cores. We compared the execution overhead of real-time tasks in the above implementation of SchedISA with that in SCHED_DEADLINE's P-EDF implementation, which concurrently executes real-time and non-real-time tasks in Linux OS in all the cores. The experimental results show that the execution overhead of real-time tasks in the above implementation of SchedISA is considerably less than that in SCHED_DEADLINE. We believe that, with further refinement of SchedISA, the execution overhead of real-time tasks in SchedISA can be reduced to a predictable maximum, making it suitable for scheduling hard real-time tasks without affecting the CPU share of Linux tasks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A(2)* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the origin of room temperature weak ferromagnetic behavior of polycrystalline Pb(Fe2/3W1/3)O-3 (PFW) powder. The structure and magnetic properties of the ceramic powder prepared by a Columbite method were characterized by X-ray and neutron diffraction, Mossbauer spectroscopy and magnetization measurements. Rietveld analysis of diffraction data confirm the formation of single phase PFW, without traces of any parasitic pyrochlore phase. PFW was found to crystallize in the cubic structure at room temperature. The Rietveld refinement of neutron diffraction data measured at room temperature confirmed the G-type antiferromagnetic structure of PFW in our sample. However, along with the antiferromagnetic (AFM) ordering of the Fe spins, we have observed the existence of weak ferromagnetism at room temperature through: (i) a clear opening of hysteresis (M-H) loop, (ii) bifurcation of the field cooled and zero-field cooled susceptibility; supported by Mossbauer spectroscopy results. The P-E loop measurements showed a non-linear slim hysteresis loop at room temperature due to the electronic conduction through the local inhomogeneities in the PFW crystallites and the inter-particle regions. By corroborating all the magnetic measurements, especially the spin glass nature of the sample, with the conduction behavior of the sample, we report here that the observed ferromagnetism originates at these local inhomogeneous regions in the sample, where the Fe-spins are not perfectly aligned antiferromagnetically due to the compositional disordering. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.