44 resultados para Rapports de couples
Resumo:
We interpret the recent discovery of a 125 GeV Higgs-like state in the context of a two-Higgs-doublet model with a heavy fourth sequential generation of fermions, in which one Higgs doublet couples only to the fourth-generation fermions, while the second doublet couples to the lighter fermions of the first three families. This model is designed to accommodate the apparent heaviness of the fourth-generation fermions and to effectively address the low-energy phenomenology of a dynamical electroweak-symmetry-breaking scenario. The physical Higgs states of the model are, therefore, viewed as composites primarily of the fourth-generation fermions. We find that the lightest Higgs, h, is a good candidate for the recently discovered 125 GeV spin-zero particle, when tan beta similar to O(1), for typical fourth-generation fermion masses of M-4G = 400-600 GeV, and with a large t-t' mixing in the right-handed quark sector. This, in turn, leads to BR(t' -> th) similar to O(1), which drastically changes the t' decay pattern. We also find that, based on the current Higgs data, this two-Higgs-doublet model generically predicts an enhanced production rate (compared to the Standard Model) in the pp -> h -> tau tau channel, and reduced rates in the VV -> h -> gamma gamma and p (p) over bar /pp -> V -> hV -> Vbb channels. Finally, the heavier CP-even Higgs is excluded by the current data up to m(H) similar to 500 GeV, while the pseudoscalar state, A, can be as light as 130 GeV. These heavier Higgs states and the expected deviations from the Standard Model din some of the Higgs production channels can be further excluded or discovered with more data.
Resumo:
There has been growing interest in understanding energy metabolism in human embryos generated using assisted reproductive techniques (ART) for improving the overall success rate of the method. Using NMR spectroscopy as a noninvasive tool, we studied human embryo metabolism to identify specific biomarkers to assess the quality of embryos for their implantation potential. The study was based on estimation of pyruvate, lactate and alanine levels in the growth medium, ISM1, used in the culture of embryos. An NMR study involving 127 embryos from 48 couples revealed that embryos transferred on Day 3 (after 72 h in vitro culture) with successful implantation (pregnancy) exhibited significantly (p < 10(-5)) lower pyruvate/alanine ratios compared to those that failed to implant. Lactate levels in media were similar for all embryos. This implies that in addition to lactate production, successfully implanted embryos use pyruvate to produce alanine and other cellular functions. While pyruvate and alanine individually have been used as biomarkers, the present study highlights the potential of combining them to provide a single parameter that correlates strongly with implantation potential. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.
Resumo:
Service systems are labor intensive. Further, the workload tends to vary greatly with time. Adapting the staffing levels to the workloads in such systems is nontrivial due to a large number of parameters and operational variations, but crucial for business objectives such as minimal labor inventory. One of the central challenges is to optimize the staffing while maintaining system steady-state and compliance to aggregate SLA constraints. We formulate this problem as a parametrized constrained Markov process and propose a novel stochastic optimization algorithm for solving it. Our algorithm is a multi-timescale stochastic approximation scheme that incorporates a SPSA based algorithm for ‘primal descent' and couples it with a ‘dual ascent' scheme for the Lagrange multipliers. We validate this optimization scheme on five real-life service systems and compare it with a state-of-the-art optimization tool-kit OptQuest. Being two orders of magnitude faster than OptQuest, our scheme is particularly suitable for adaptive labor staffing. Also, we observe that it guarantees convergence and finds better solutions than OptQuest in many cases.
Resumo:
The way in which basal tractions, associated with mantle convection, couples with the lithosphere is a fundamental problem in geodynamics. A successful lithosphere-mantle coupling model for the Earth will satisfy observations of plate motions, intraplate stresses, and the plate boundary zone deformation. We solve the depth integrated three-dimensional force balance equations in a global finite element model that takes into account effects of both topography and shallow lithosphere structure as well as tractions originating from deeper mantle convection. The contribution from topography and lithosphere structure is estimated by calculating gravitational potential energy differences. The basal tractions are derived from a fully dynamic flow model with both radial and lateral viscosity variations. We simultaneously fit stresses and plate motions in order to delineate a best-fit lithosphere-mantle coupling model. We use both the World Stress Map and the Global Strain Rate Model to constrain the models. We find that a strongly coupled model with a stiff lithosphere and 3-4 orders of lateral viscosity variations in the lithosphere are best able to match the observational constraints. Our predicted deviatoric stresses, which are dominated by contribution from mantle tractions, range between 20-70 MPa. The best-fitting coupled models predict strain rates that are consistent with observations. That is, the intraplate areas are nearly rigid whereas plate boundaries and some other continental deformation zones display high strain rates. Comparison of mantle tractions and surface velocities indicate that in most areas tractions are driving, although in a few regions, including western North America, tractions are resistive. Citation: Ghosh, A., W. E. Holt, and L. M. Wen (2013), Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics.
Resumo:
Interdiffusion studies become increasingly difficult to perform with the increasing number of elements in a system. It is rather easy to calculate the interdiffusion coefficients for all the compositions in the interdiffusion zone in a binary system. The intrinsic diffusion coefficients can be calculated for the composition of Kirkendall marker plane in a binary system. In a ternary system, however, the interdiffusion coefficients can only be calculated for the composition where composition profiles from two different diffusion couples intersect. Intrinsic diffusion coefficients are possible to calculate when the Kirkendall markers are also present at that composition, which is a condition that is generally difficult to satisfy. In a quaternary system, the composition profiles for three different diffusion couples must intersect at one particular composition to calculate the diffusion parameters, which is a condition that is almost impossible to satisfy. To avoid these complications in a multicomponent system, the average interdiffusion coefficients are calculated. I propose a method of calculating the intrinsic diffusion coefficients and the variation in the interdiffusion coefficients for multicomponent systems. This method can be used for a single diffusion couple in a multicomponent pseudobinary system. The compositions of the end members of a diffusion couple should be selected such that only two elements diffuse into the interdiffusion zone. A few hypothetical diffusion couples are considered in order to validate and explain our method. Various sources of error in the calculations are also discussed.
Resumo:
Diffusion couple experiments are conducted in Co-Ni-Pt system at 1200 degrees C and in Co-Ni-Fe system at 1150 degrees C, by coupling binary alloys with the third element. Uphill diffusion is observed for both Co and Ni in Pt rich corner of the Co-Ni-Pt system, whereas in the Co-Ni-Fe system, it is observed for Co. Main and cross interdiffusion coefficients are calculated at the composition of intersection of two independent diffusion profiles. In both the systems, the main interdiffusion coefficients are positive over the whole composition range and the cross interdiffusion coefficients show both positive and negative values at different regions. Hardness measured by performing the nanoindentations on diffusion couples of both the systems shows the higher values at intermediate compositions.
Resumo:
Solid diffusion couple experiments are conducted to analyse the growth mechanism of the phases and the diffusion mechanism of the components in the Ti-Si system. The calculation of the parabolic growth constants and the integrated diffusion coefficients substantiates that the analysis is intrinsically prone to erroneous conclusions if it is based on just the parabolic growth constants determined for a multiphase interdiffusion zone. The location of the marker plane is detected based on the uniform grain morphology in the TiSi2 phase, which indicates that this phase grows mainly because of Si diffusion. The growth mechanism of the phases and morphological evolution in the interdiffusion zone are explained with the help of imaginary diffusion couples. The activation enthalpies for the integrated diffusion coefficient of TiSi2 and the Si tracer diffusion are calculated as 190 +/- 9 and 197 +/- 8 kJ/mol, respectively. The crystal structure, details on the nearest neighbours of the components, and their relative mobilities indicate that the vacancies are mainly present on the Si sublattice.
Resumo:
Oxovanadium(IV) complexes, viz. VO(Fc-tpy)(Curc)](ClO4) (1), VO(Fc-tpy)(bDHC)](ClO4) (2), VO(Fc-tpy)(bDMC)](ClO4) (3) and VO(Ph-tpy)(Curc)](ClO4) (4), of 4'-ferrocenyl-2,2':6',2 `'-terpyridine (Fc-tpy) and 4'-phenyl-2,2':6',2 `'-terpyridine (Ph-tpy) and monoanionic curcumin (Curc), bis-dehydroxycurcmin (bDHC) and bis-demethoxycurcumin (bDMC) were prepared, characterized and their photo-induced DNA cleavage activity and photocytotoxicity in visible light studied. The ferrocenyl complexes 1-3 showed an intense metal-to-ligand charge transfer band near 585 nm in DMF and displayed Fc(+)/Fc and V(IV)/V(III) redox couples near 0.65 V and -1.05 V vs. SCE in DMF-0.1 M TBAP. The complexes as avid binders to calf thymus DNA showed significant photocleavage of plasmid DNA in red light of 647 nm forming (OH)-O-center dot radicals. The complexes showed photocytotoxicity in HeLa and Hep G2 cancer cells in visible light of 400-700 nm with low dark toxicity. ICP-MS and fluorescence microscopic studies exhibited significant cellular uptake of the complexes within 4 h of treatment with complexes. The treatment with complex 1 resulted in the formation of reactive oxygen species inside the HeLa cells which was evidenced from the DCFDA assay. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
A study on reactive diffusion is conducted in the Re-Si system. According to the study, ReSi1.8 phase grows with much higher thickness than the Re2Si phase, in the interdiffusion zone of bulk diffusion couples. The activation energy for integrated diffusion of ReSi1.8 is estimated to be 605 +/- 23 kJ/mol. The growth of the Re2Si phase is studied by considering an incremental diffusion couple of Re/ReSi1.8. Analysis based on the calculation of integrated diffusion coefficients indicates the reason underlying the observed high difference between the growth rates of the ReSi1.8 and Re2Si phases.
Resumo:
Oxovanadium(IV) complexes VO(Fc-tpy)(acac)](ClO4) (1), VO(Fc-tpy)(nap-acac)](ClO4) (2), VO(Fc-tpy)(py-acac)](ClO4) (3) and VO(Ph-tpy)(py-acac)](ClO4) (4) of 4'-ferroceny1-2,2':6',2 `'-terpyridine (Fc-tpy) and 4'-phenyl-2,2':6',2 `'-terpyridine (Ph-tpy) having monoanionic acetylacetonate (acac), naphthylacetylacetonate (nap-acac) or pyrenylacetylacetonate (py-acac) ligand were prepared, characterized and their photocytotoxicity in visible light studied. The ferrocenyl complexes 1-3 showed an intense charge transfer band near 585 nm in DMF and displayed Fc(+)/Fc and V(IV)/V(III) redox couples near 0.66 V and -0.95 V vs. SCE in DMF-0.1 M TBAP. The complexes as avid binders to calf thymus DNA showed significant photocleavage of plasmid DNA in green light (568 nm) forming center dot OH radicals. The complexes that are photocytotoxic in HeLa and MCF-7 cancer cells in visible light (400-700 nm) with low dark toxicity remain nontoxic in normal fibroblast 3T3 cells. ICP-MS and fluorescence microscopic studies show significant cellular uptake of the complexes. Photo-irradiation of the complexes causes apoptotic cell death by ROS as evidenced from the DCFDA assay. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
Ferrocenyl (Fc) conjugates (1-3) of alkylpyridinium cations (E)-N-alkyl-4-2-(ferrocenyl)vinyl]pyridinium bromide (alkyl = n-butyl in 1, N,N,N-triethylbutan-1-aminium bromide in 2, and n-butyltriphenylphosphonium bromide in 3) were prepared and characterized, and their photocytotoxicities and cellular uptakes in HeLa cancer and 3T3 normal cells were studied. The species with a 4-methoxyphenyl moiety (4) instead of Fc was used as a control. The triphenylphosphonium-appended 3 was designed for specific delivery into the mitochondria of the cells. Compounds 1-3 showed metal-to-ligand charge-transfer bands at approximate to 550 nm in phosphate buffered saline (PBS). The Fc(+)/Fc and pyridinium core redox couples were observed at 0.75 and -1.2 V versus a saturated calomel electrode (SCE) in CH2Cl2/0.1 M (nBu(4)N)ClO4. Conjugate 3 showed a significantly higher photocytotoxicity in HeLa cancer cells IC50 = (1.3 +/- 0.2) M] than in normal 3T3 cells IC50 = (27.5 +/- 1.5) M] in visible light (400-700 nm). The positive role of the Fc moiety in 3 was evident from the inactive nature of 4. A JC-1 dye (5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide) assay showed that 3 targets the mitochondria and induces apoptosis by the mitochondrial intrinsic pathway caused by reactive oxygen species (ROS). Annexin/propidium iodide studies showed that 3 induces apoptotic cell death in visible light by ROS generation, as evidenced from dichlorofluorescein diacetate assay. Compounds 1-3 exhibit DNA photocleavage activity through the formation of hydroxyl radicals.
Resumo:
Eu+3 was incorporated into the lattice of a lead-free ferroelectric Na1/2Bi1/2TiO3 (NBT) as per the nominal formula Na0.5Bi0.5-xEuxTiO3. This system was investigated with regard to the Eu+3 photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a long range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main D-5(0)-> F-7(0) line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu+3 luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom. (C) 2015 AIP Publishing LLC.
Resumo:
Diffusion couple experiments are conducted in Co-Ni-Pt system at 1200 degrees C and in Co-Ni-Fe system at 1150 degrees C, by coupling binary alloys with the third element. Uphill diffusion is observed for both Co and Ni in Pt rich corner of the Co-Ni-Pt system, whereas in the Co-Ni-Fe system, it is observed for Co. Main and cross interdiffusion coefficients are calculated at the composition of intersection of two independent diffusion profiles. In both the systems, the main interdiffusion coefficients are positive over the whole composition range and the cross interdiffusion coefficients show both positive and negative values at different regions. Hardness measured by performing the nanoindentations on diffusion couples of both the systems shows the higher values at intermediate compositions.