52 resultados para RODS
Resumo:
A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Two different experimental studies of polymer dynamics based on single-molecule fluorescence imaging have recently found evidence of heterogeneities in the widths of the putative tubes that surround filaments of F-actin during their motion in concentrated solution. In one J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchesner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)], the observations were explained in terms of the statistics of a worm-like chain confined to a potential determined self-consistently by a binary collision approximation, and in the other B. Wang, J. Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010)], they were explained in terms of the scaling properties of a random fluid of thin rods. In this paper, we show, using an exact path integral calculation, that the distribution of the length-averaged transverse fluctuations of a harmonically confined weakly bendable rod (one possible realization of a semiflexible chain in a tube), is in good qualitative agreement with the experimental data, although it is qualitatively different in analytic structure from the earlier theoretical predictions. We also show that similar path integral techniques can be used to obtain an exact expression for the time correlation function of fluctuations in the tube cross section. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4712306]
Resumo:
Hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods were prepared by hydrothermal method. Dy(OH)(3) nanorods was directly obtained at 180 degrees C for 20 h after hydrothermal treatment whereas subsequently heat treatment at 750 degrees C for 2 h gives pure cubic Dy2O3. SEM micrographs reveal that needle shaped rods with different sizes were observed in both the phases. TEM results also confirm this. The TL response of hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods have been analyzed for gamma-irradiation over a wide range of exposures (1-5 kGy). TL glow peak intensity increases with gamma dose in both the phases. The activation energy (E), order of kinetics (6), and frequency factor (s) for both the phases have been determined using Chen's peak shape method. The simple glow curve shape, structure and linear response to gamma-irradiation over a large span of exposures makes the cubic Dy2O3 as a useful dosimetric material to estimate high exposures of gamma-rays. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The evolution of microstructure and texture in Hexagonal Close Pack commercially pure titanium has been studied in torsion in a strain rate regime of 0.001 to 1 s(-1). Free end torsion tests carried out on titanium rods indicated higher stress levels at higher strain rate but negligible change in the strain-hardening behaviour. There was a decrease in the intra-granular misorientation while a negligible change in the amount of contraction and extension twins was observed with increase in strain rate. The deformed samples showed a C-1 fibre (c-axis is first rotated 90 degrees in shear direction and then +30 degrees in shear plane direction) at all the strain rates. With the increase in strain rate, there was an increase in the intensity of the C-1 fibre and it became more heterogeneous with a strong {11(2)over-bar6}< 2(8)over-bar)63 > component. In the absence of extensive twinning, pyramidal < c+a > slip system is attributed for the observed deformation texture. The present investigation, therefore, substantiates the theoretical prediction of increase in strength of texture with strain rate in torsion.
Resumo:
In this study tensile properties of consolidated magnesium chips obtained from solid state re-cycling (SSR) has been examined and correlated with the microstructure. Chips machined from as-cast billet of pure magnesium were consolidated through SSR technique, comprising of compaction at ambient conditions followed by hot extrusion at four different temperatures viz., 250, 300, 350 and 400 degrees C. The extruded rods were characterized for microstructure and their room temperature tensile properties. Both ultimate tensile strength and 0.2% proof stress of these consolidated materials are higher by 15-35% compared to reference material (as cast and extruded). Further these materials obey Hall-Petch relation with respect to strength dependence of grain size. Strain hardening behavior, measured in terms of hardening exponent, hardening capacity and hardening rate was found to be distinctly different in chip consolidated material compared to reference material. Strength asymmetry, measured as a ratio of compressive proof stress to tensile proof stress was higher in chip consolidated material. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper the case of a typical line defect in 2D Photonic crystal is analyzed. The 2D photonic crystals are of dielectric rods in air in square and triangular lattice configurations. This line defect serves as waveguide with a pair of modes having opposite dispersion characteristics.
Resumo:
Faceted ZnO nanorods with different aspect ratios were synthesized by a solvothermal method by tuning the reaction time. Increased reaction leads to the formation of high aspect ratio ZnO nanorods largely bound by the prism planes. The high aspect ratio rods showed significantly higher visible light photocatalytic activity when compared to the lower aspect ratio structures. It is proposed that the higher activity is due to better charge separation in the elongated 1D structure. In addition, the fraction of unsaturated Zn2+ sites is higher on the {10 (1) over bar0} facets, leading to better adsorption of oxygen-containing species. These species enhance the production of reactive radicals that are responsible for photodegradation. The photocurrent for these ZnO nanostructures under solar light was measured and a direct correlation between photocurrent and aspect ratio was observed. Since the underlying mechanisms for photodegradation and photocurrent generation are directly related to the efficiency of electron-hole creation and separation, this observation corroborates that the charge separation processes are indeed enhanced in the high aspect ratio structures. The efficiency of photoconduction (electron-hole pair separation) could be further improved by attaching Au nanoparticles on ZnO, which can act as a sink for the electrons. This heterostructure exhibits a high chemisorption of oxygen, which facilitates the production of highly reactive radicals contributing to the high photoreactivity. The suggested mechanisms are applicable to other n-type semiconductor nanostructures with important implications for applications relating to energy and the environment.
Resumo:
Sodium doped zinc oxide (Na:ZnO) thin films were deposited on glass substrates at substrate temperatures 300,400 and 500 degrees C by a novel nebulizer spray method. X-ray diffraction shows that all the films are polycrystalline in nature having hexagonal structure with high preferential orientation along (0 0 2) plane. High resolution SEM studies reveal the formation of Na-doped ZnO films having uniformly distributed nano-rods over the entire surface of the substrates at 400 degrees C. The complex impedance of the ZnO nano-rods shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 170 to 270 degrees C and thereafter slightly increased. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Ceria, because of its excellent redox behavior and oxygen storage capacity, is used as a catalyst for several technologically important reactions. In the present study, different morphologies of nano-CeO2 (rods, cubes, octahedra) were synthesized using the hydrothermal route. An ultrafast microwave-assisted method was used to efficiently attach Pt particles to the CeO2 polyhedra. These nanohybrids were tested as catalysts for the CO oxidation reaction. The CeO2/Pt catalyst with nanorods as the support was found to be the most active catalyst. XPS and IR spectroscopy measurements were carried out in order to obtain a mechanistic understanding and it was observed that the adsorbed carbonates with lower stability on the reactive planes of nanorods and cubes are the major contributor to this enhanced catalytic activity.
Resumo:
Various morphologies of Eu3+ activated gadolinium oxide have been prepared by hydrothermal method using hexadecylamine (HDA) as surfactant at different experimental conditions. The powder X-ray diffraction studies reveal as-formed product is hexagonal Gd(OH)(3):Eu3+ phase and subsequent heat treatment at 350 and 600 degrees C transforms to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+ phases respectively. SEM pictures of without surfactant show irregular shaped rods along with flakes. However, in the presence of HDA surfactant, the particles are converted into rods of various sizes. The temperature dependent morphological evolution of Gd2O3:Eu3+ without and with HDA surfactant is studied. TEM micrographs of Gd(OH)(3):Eu3+ sample with HDA confirms smooth nanorods with various diameters in the range 20-100 nm. FTIR studies reveal that HDA surfactant plays an important role in conversion of cubic to hexagonal phases. Among these three phases, cubic phase Gd2O3:Eu3+ (lambda(ex) = 254 nm) show red emission at 612 nm corresponding to D-5(0)-> F-7(2) and is more efficient host than the monoclinic counterpart. The band gap for hexagonal Gd(OH)(3):Eu3+ is more when compared to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
Lamins are intermediate filament proteins of type V constituting a nuclear lamina or filamentous meshwork which lines the nucleoplasmic side of the inner nuclear membrane. This protein mesh provides a supporting scaffold for the nuclear envelope and tethers interphase chromosome to the nuclear periphery. Mutations of mainly A-type lamins are found to be causative for at least 11 human diseases collectively termed as laminopathies majority of which are characterised by aberrant nuclei with altered structural rigidity, deformability and poor mechanotransduction behaviour. But the investigation of viscoelastic behavior of lamin A continues to elude the field. In order to address this problem, we hereby present the very first report on viscoelastic properties of wild type human lamin A and some of its mutants linked with Dilated cardiomyopathy (DCM) using quantitative rheological measurements. We observed a dramatic strain-softening effect on lamin A network as an outcome of the strain amplitude sweep measurements which could arise from the large compliance of the quasi-cross-links in the network or that of the lamin A rods. In addition, the drastic stiffening of the differential elastic moduli on superposition of rotational and oscillatory shear stress reflect the increase in the stiffness of the laterally associated lamin A rods. These findings present a preliminary insight into distinct biomechanical properties of wild type lamin A protein and its mutants which in turn revealed interesting differences.
Resumo:
Dysprosium oxide (Dy2O3) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using gamma-rays. A well resolved glow peak at 353 degrees C along with less intense peak at 183 degrees C was observed in GC route while, in CP a single glow peak at 364 degrees C was observed. The kinetic parameters were estimated using Chen's glow peak route. Photoluminescence (PL) of Dy2O3 shows peaks at 481, 577,666 and 756 nm which were attributed to Dy3+ transitions of F-4(9/2)-H-6(15/2), H-6(11/2), H-6(11/2) and H-6(9/2), respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED'S. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Rod like structures of hexagonal Y(OH)(3):Ni2+ and cubic Y2O3:Ni2+ phosphors have been successfully synthesized by solvothermal method. X-ray diffraction studies of as-formed product shows hexagonal phase, whereas the product heat treated at 700 degrees C shows pure cubic phase. Scanning electron micrographs (SEM) of Y(OH)(3):Ni2+ show hexagonal rods while Y2O3:Ni2+ rods were found to consist of many nanoparticles stacked together forming multi-particle-chains. EPR studies suggest that the site symmetry around Ni2+ ions is predominantly octahedral. PL spectra show emission in blue, green and red regions due to the T-3(1)(P-3)->(3)A(2)(F-3), T-1(2)(D-1)->(3)A(2)(F-3) and T-1(2)(D-1)-> T-3(2)(F-3) transitions of Ni2+ ions, respectively. TL studies were carried out for Y(OH)(3):Ni2+ and Y2O3:Ni2+ phosphor upon gamma-dose for 1-6 kGy. A single well resolved glow peaks at 195 and 230 degrees C were recorded for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The glow peak intensity increases linearly up to 4 kGy and 5 kGy for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were estimated by different methods. The phosphor follows simple glow peak structure, linear response with gamma dose, low fading and simple trap distribution, suggesting that it is quite suitable for radiation dosimetry. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The self-organized motion of vast numbers of creatures in a single direction is a spectacular example of emergent order. Here, we recreate this phenomenon using actuated nonliving components. We report here that millimetre-sized tapered rods, rendered motile by contact with an underlying vibrated surface and interacting through a medium of spherical beads, undergo a phase transition to a state of spontaneous alignment of velocities and orientations above a threshold bead area fraction. Guided by a detailed simulation model, we construct an analytical theory of this flocking transition, with two ingredients: a moving rod drags beads; neighbouring rods reorient in the resulting flow like a weathercock in the wind. Theory and experiment agree on the structure of our phase diagram in the plane of rod and bead concentrations and power-law spatial correlations near the phase boundary. Our discovery suggests possible new mechanisms for the collective transport of particulate or cellular matter.
Resumo:
Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of similar to 3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer.