59 resultados para RADIO REMNANT
Resumo:
We use the HΙ scale height data along with the HΙ rotation curve as constraints to probe the shape and density profile of the dark matter halos of M31 (Andromeda) and the superthin, low surface brightness (LSB) galaxy UGC 07321. We model the galaxy as a two component system of gravitationally-coupled stars and gas subjected to the force field of a dark matter halo. For M31, we get a flattened halo which is required to match the outer galactic HΙ scale height data, with our best-fit axis ratio (0.4) lying at the most oblate end of the distributions obtained from cosmological simulations. For UGC 07321, our best-fit halo core radius is only slightly larger than the stellar disc scale length, indicating that the halo is important even at small radii in this LSB galaxy. The high value of the gas velocity dispersion required to match the scale height data can explain the low star-formation rate of this galaxy.
Resumo:
We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6 +/- 1.0 ns for electrons in bulk Ge at 127 K was extracted.
Resumo:
An experimental setup has been realized to measure weak magnetic moments which can be modulated at radio frequencies (similar to 1-5 MHz). Using an optimized radio-frequency (RF) pickup coil and lock-in amplifier, an experimental sensitivity of 10(-15) Am(2) corresponding to 10(-18) emu has been demonstrated with a 1 s time constant. The detection limit at room temperature is 9.3 x 10(-16) Am(2)/root Hz limited by Johnson noise of the coil. The setup has been used to directly measure the magnetic moment due to a small number (similar to 7 x 10(8)) of spin polarized electrons generated by polarization modulated optical radiation in GaAs and Ge. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3654229]
Resumo:
Grey tracks produced in KTiOPO4 (KTP) by applying a dc electric field have been studied through optical absorption, Raman scattering, and synchrotron x‐ray topography. A study of the optical absorption and Raman scattering from the grey‐tracked region suggests that their formation is accompanied by changes in the electronic levels of Ti4+. There is no evidence for a major structural change or disorder in the grey‐tracked region. However, the x‐ray topographs do indicate the presence of a remnant strain in the lattice, which might contribute to the observed changes in the Raman intensities.
Resumo:
The spectral index-luminosity relationship for steep-spectrum cores in galaxies and quasars has been investigated, and it is found that the sample of galaxies supports earlier suggestions of a strong correlation, while there is weak evidence for a similar relationship for the quasars. It is shown that a strong spectral index-luminosity correlation can be used to set an upper limit to the velocities of the radio-emitting material which is expelled from the nucleus in the form of collimated beams or jets having relativistic bulk velocities. The data on cores in galaxies indicate that the Lorentz factors of the radiating material are less than about 2.
Resumo:
We present the radio-optical imaging of ATLBS, a sensitive radio survey (Subrahmanyan et al. 2010). The primary aim of the ATLBS survey is to image low-power radio sources which form the bulk of the radio source population to moderately high red-shifts (z similar to 1.0). The accompanying multiband optical and near infra-red observations provide information about the hosts and environments of the radio sources. We give here details of the imaging of the radio data and optical data for the ATLBS survey.
Resumo:
We report our search for and a possible detection of periodic radio pulses at 34.5 MHz from the Fermi Large Area Telescope pulsar J1732-3131. The candidate detection has been possible in only one of the many sessions of observations made with the low-frequency array at Gauribidanur, India, when the otherwise radio weak pulsar may have apparently brightened many folds. The candidate dispersion measure along the sight line, based on the broad periodic profiles from �20min of data, is estimated to be 15.44 ± 0.32 pccc -1. We present the details of our periodic and single-pulse search, and discuss the results and their implications relevant to both, the pulsar and the intervening medium. © 2012 RAS.
Resumo:
The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6 `' angular resolution and 72 mu Jy beam(-1) rms noise. The images (centered at R. A. 00(h)35(m)00(s), decl. -67 degrees 00'00 `' and R. A. 00(h)59(m)17(s), decl. -67.00'00 `', J2000 epoch) cover 8.42 deg(2) sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50 `'. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.
Resumo:
We consider precoding strategies at the secondary base station (SBS) in a cognitive radio network with interference constraints at the primary users (PUs). Precoding strategies at the SBS which satisfy interference constraints at the PUs in cognitive radio networks have not been adequately addressed in the literature so far. In this paper, we consider two scenarios: i) when the primary base station (PBS) data is not available at SBS, and ii) when the PBS data is made available at the SBS. We derive the optimum MMSE and Tomlinson-Harashima precoding (THP) matrix Alters at the SBS which satisfy the interference constraints at the PUs for the former case. For the latter case, we propose a precoding scheme at the SBS which performs pre-cancellation of the PBS data, followed by THP on the pre-cancelled data. The optimum precoding matrix filters are computed through an iterative search. To illustrate the robustness of the proposed approach against imperfect CSI at the SBS, we then derive robust precoding filters under imperfect CSI for the latter case. Simulation results show that the proposed optimum precoders achieve good bit error performance at the secondary users while meeting the interference constraints at the PUs.
Resumo:
This paper considers cooperative spectrum sensing in Cognitive Radios. In our previous work we have developed DualSPRT, a distributed algorithm for cooperative spectrum sensing using Sequential Probability Ratio Test (SPRT) at the Cognitive Radios as well as at the fusion center. This algorithm works well, but is not optimal. In this paper we propose an improved algorithm- SPRT-CSPRT, which is motivated from Cumulative Sum Procedures (CUSUM). We analyse it theoretically. We also modify this algorithm to handle uncertainties in SNR's and fading.