286 resultados para Protein Structure, Tertiary
Resumo:
Repeats are two or more contiguous segments of amino acid residues that are believed to have arisen as a result of intragenic duplication, recombination and mutation events. These repeats can be utilized for protein structure prediction and can provide insights into the protein evolution and phylogenetic relationship. Therefore, to aid structural biologists and phylogeneticists in their research, a computing resource (a web server and a database), Repeats in Protein Sequences (RPS), has been created. Using RPS, users can obtain useful information regarding identical, similar and distant repeats (of varying lengths) in protein sequences. In addition, users can check the frequency of occurrence of the repeats in sequence databases such as the Genome Database, PIR and SWISS-PROT and among the protein sequences available in the Protein Data Bank archive. Furthermore, users can view the three-dimensional structure of the repeats using the Java visualization plug-in Jmol. The proposed computing resource can be accessed over the World Wide Web at http://bioserver1.physics.iisc.ernet.in/rps/.
Resumo:
Ever since lysozyme was discovered by Fleming in 1922, this protein has emerged as a model for investigations on protein structure and function. Over the years, several high-resolution structures have yielded a wealth of structural data on this protein. Extensive studies on folding of lysozyme have shown how different regions of this protein dynamically interact with one another. Data is also available from numerous biotechnological studies wherein lysozyme has been employed as a model protein for recovering active recombinant protein from inclusion bodies using small molecules like L-arginine. A variety of conditions have been developed in vitro to induce fibrillation in hen lysozyme. They include (a) acidic pH at elevated temperature, (b) concentrated solutions of ethanol, (c) moderate concentrations of guanidinium hydrochloride at moderate temperature, and (d) alkaline pH at room temperature. This review aims to bring together similarities and differences in aggregation mechanisms, morphology of aggregates, and related issues that arise using the different conditions mentioned above to improve our understanding. The alkaline pH condition (pH 12.2), discovered and studied extensively in our lab, shall receive special attention. More than a decade ago, it was revealed that mutations in human lysozyme can cause accumulation of large quantities of amyloid in liver, kidney, and other regions of gastrointestinal tract. Understanding the mechanism of lysozyme aggregation will probably have therapeutic implications for the treatment of systemic nonneuropathic amyloidosis. Numerous studies have begun to focus attention on inhibition of lysozyme aggregation using antibody or small molecules. The enzymatic activity of lysozyme presents a convenient handle to quantify the native population of lysozyme in a sample where aggregation has been inhibited. The rich information available on lysozyme coupled with the multiple conditions that have been successful in inducing/inhibiting its aggregation in vitro makes lysozyme an ideal model protein to investigate amyloidogenesis.
Resumo:
A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of similar to 1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (Rank Score), which correlated with the residue depth, and identify active-site residues. Using these correlations, similar to 98% of correct models of CcdB (RMSD <= 4 angstrom) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout.
Resumo:
Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694268]
Resumo:
Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein `structure prediction' problem.
Resumo:
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a ID sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Protein structure space is believed to consist of a finite set of discrete folds, unlike the protein sequence space which is astronomically large, indicating that proteins from the available sequence space are likely to adopt one of the many folds already observed. In spite of extensive sequence-structure correlation data, protein structure prediction still remains an open question with researchers having tried different approaches (experimental as well as computational). One of the challenges of protein structure prediction is to identify the native protein structures from a milieu of decoys/models. In this work, a rigorous investigation of Protein Structure Networks (PSNs) has been performed to detect native structures from decoys/ models. Ninety four parameters obtained from network studies have been optimally combined with Support Vector Machines (SVM) to derive a general metric to distinguish decoys/models from the native protein structures with an accuracy of 94.11%. Recently, for the first time in the literature we had shown that PSN has the capability to distinguish native proteins from decoys. A major difference between the present work and the previous study is to explore the transition profiles at different strengths of non-covalent interactions and SVM has indeed identified this as an important parameter. Additionally, the SVM trained algorithm is also applied to the recent CASP10 predicted models. The novelty of the network approach is that it is based on general network properties of native protein structures and that a given model can be assessed independent of any reference structure. Thus, the approach presented in this paper can be valuable in validating the predicted structures. A web-server has been developed for this purpose and is freely available at http://vishgraph.mbu.iisc.ernet.in/GraProStr/PSN-QA.html.
Resumo:
In addition to the chemical nature of the surface, the dimensions of the confining host exert a significant influence on confined protein structures; this results in immense biological implications, especially those concerning the enzymatic activities of the protein. This study probes the structure of hemoglobin (Hb), a model protein, confined inside silica tubes with pore diameters that vary by one order of magnitude (approximate to 20-200 nm). The effect of confinement on the protein structure is probed by comparison with the structure of the protein in solution. Small-angle neutron scattering (SANS), which provides information on protein tertiary and quaternary structures, is employed to study the influence of the tube pore diameter on the structure and configuration of the confined protein in detail. Confinement significantly influences the structural stability of Hb and the structure depends on the Si-tube pore diameter. The high radius of gyration (R-g) and polydispersity of Hb in the 20 nm diameter Si-tube indicates that Hb undergoes a significant amount of aggregation. However, for Si-tube diameters greater or equal to 100 nm, the R-g of Hb is found to be in very close proximity to that obtained from the protein data bank (PDB) reported structure (R-g of native Hb=23.8 angstrom). This strongly indicates that the protein has a preference for the more native-like non-aggregated state if confined inside tubes of diameter greater or equal to 100 nm. Further insight into the Hb structure is obtained from the distance distribution function, p(r), and ab initio models calculated from the SANS patterns. These also suggest that the Si-tube size is a key parameter for protein stability and structure.
Resumo:
The power of X-ray crystal structure analysis as a technique is to `see where the atoms are'. The results are extensively used by a wide variety of research communities. However, this `seeing where the atoms are' can give a false sense of security unless the precision of the placement of the atoms has been taken into account. Indeed, the presentation of bond distances and angles to a false precision (i.e. to too many decimal places) is commonplace. This article has three themes. Firstly, a basis for a proper representation of protein crystal structure results is detailed and demonstrated with respect to analyses of Protein Data Bank entries. The basis for establishing the precision of placement of each atom in a protein crystal structure is non-trivial. Secondly, a knowledge base harnessing such a descriptor of precision is presented. It is applied here to the case of salt bridges, i.e. ion pairs, in protein structures; this is the most fundamental place to start with such structure-precision representations since salt bridges are one of the tenets of protein structure stability. Ion pairs also play a central role in protein oligomerization, molecular recognition of ligands and substrates, allosteric regulation, domain motion and alpha-helix capping. A new knowledge base, SBPS (Salt Bridges in Protein Structures), takes these structural precisions into account and is the first of its kind. The third theme of the article is to indicate natural extensions of the need for such a description of precision, such as those involving metalloproteins and the determination of the protonation states of ionizable amino acids. Overall, it is also noted that this work and these examples are also relevant to protein three-dimensional structure molecular graphics software.
Resumo:
Identification of residue-residue contacts from primary sequence can be used to guide protein structure prediction. Using Escherichia coli CcdB as the test case, we describe an experimental method termed saturation-suppressor mutagenesis to acquire residue contact information. In this methodology, for each of five inactive CcdB mutants, exhaustive screens for suppressors were performed. Proximal suppressors were accurately discriminated from distal suppressors based on their phenotypes when present as single mutants. Experimentally identified putative proximal pairs formed spatial constraints to recover >98% of native-like models of CcdB from a decoy dataset. Suppressor methodology was also applied to the integral membrane protein, diacylglycerol kinase A where the structures determined by X-ray crystallography and NMR were significantly different. Suppressor as well as sequence co-variation data clearly point to the Xray structure being the functional one adopted in vivo. The methodology is applicable to any macromolecular system for which a convenient phenotypic assay exists.
Resumo:
The binding of xylo-oligosaccharides to Chainia endoxylanase resulted in a decrease in fluorescence intensity of the enzyme with the formation of 1:1 complex. Equilibrium and thermodynamic parameters of ligand binding were determined by fluorescence titrations and titration calorimetry. The affinity of xylanase for the oligosaccharides increases in the order X-2 < X-3 < X-4 less than or equal to X-5. Contributions from the enthalpy towards the free energy change decreased with increasing chain length from X-2 to X-4, whereas an increase in entropy was observed, the change in enthalpy and entropy of binding being compensatory. The entropically driven binding process suggested that hydrophobic interactions as well as hydrogen bonds play a predominant role in ligand binding.
Resumo:
The winged-bean tuber lectin binds to N-dansyl(5-dimethylaminonaphthalene-1-sulphonic acid)galactosamine, leading to a 12.5-fold increase in dansyl fluorescence with a concomitant 25 nm blue-shift in the emission maximum. The enhancement of fluorescence intensity was completely reversed by the addition of methyl α-galactopyranoside. The lectin has two binding sites per molecule for this fluorescent sugar and an association constant of 2.59 · 105 M−1 at 25° C. The binding of N-dansylgalactosamine to the lectin shows that it can accommodate a large hydrophobic substituent on the C-2 carbon of d-galactose. Studies with other sugars indicate that a hydrophobic substituent with α-conformation at the anomeric position increases the affinity of binding. The C-4 and C-6 hydroxyl groups are also critical for sugar binding to this lectin.
Resumo:
By means of CNDO/2 calculations on N-methyl acetamide, it is shown that the state of minimum energy of the trans-peptide unit is a non-planar conformation, with the NH and NC2α bonds being significantly out of the plane formed by the atoms C1α, C′, O and N.
Resumo:
The conformation of three linked peptide units having an internal 4 → 1 type of hydrogen bond has been studied in detail, and the low energy conformations are listed. These conformations all lead to the reversal of the chain direction, and may therefore be called as “hairpin bends” or “U-bends”. Since this bend can occur at the end of two chains hydrogen-bonded in the antiparallel β-conformation, it is also known as the “β-bend”. Two types of conformation are possible when the residues at the second and third Cα atoms are both of type L (the LL bend), while only one type is possible for the LD and the DL bend. The LL bend can also accommodate the sequences LG, GL, GG (G = glycine), while the LD bend can accommodate the sequences LG, GD and GG. The conformations for the sequences DD and DL are exact inverses (or mirror images) of those for the sequences LL and LD, respectively, and have dihedral angles (phi2, ψ2), (phi3, ψ3) of the same magnitudes, but of opposite signs as those for the former types, which are listed, along with the characteristics (length, angle and energy) of the hydrogen bonds. A comparison of the theoretical predictions with experimental data (from X-ray diffraction and NMR studies) on proteins and peptides, show reasonably good agreement. However, a systematic trend is observable in the experimental data, slightly deviating from theory, which indicates that some deformations occur in the shapes of the peptide units forming the bend, differing from that of the standard planar peptide unit.
Resumo:
The lengths of the carbonyl as well as of the adjacent C-N and C-C bonds in peptides are shown to vary systematically with the central C-N bond length. Results of ab initio calculations on N-methylacetamide and its Li+, Na+ and Mg2+ complexes are also discussed.