69 resultados para Precipitation radar
Resumo:
Synthetic aperture radar (SAR) is a powerful tool for mapping and remote sensing. The theory and operation of SAR have seen a period of intense activity in recent years. This paper attempts to review some of the more advanced topics studied in connection with modern SAR systems based on digital processing. Following a brief review of the principles involved in the operation of SAR, attention is focussed on special topics such as advanced SAR modelling and focussing techniques, in particular clutterlock and autofocus, Doppler centroid (DC) estimation methods involving seismic migration technique, moving target imaging, bistatic radar imaging, effects of system nonlinearities, etc.
Resumo:
We report Doppler-only radar observations of Icarus at Goldstone at a transmitter frequency of 8510 MHz (3.5 cm wavelength) during 8-10 June 1996, the first radar detection of the object since 1968. Optimally filtered and folded spectra achieve a maximum opposite-circular (OC) polarization signal-to-noise ratio of about 10 and help to constrain Icarus' physical properties. We obtain an OC radar cross section of 0.05 km(2) (with a 35% uncertainty), which is less than values estimated by Goldstein (1969) and by Pettengill et al. (1969), and a circular polarization (SC/OC) ratio of 0.5+/-0.2. We analyze the echo power spectrum with a model incorporating the echo bandwidth B and a spectral shape parameter it, yielding a coupled constraint between B and n. We adopt 25 Hz as the lower bound on B, which gives a lower bound on the maximum pole-on breadth of about 0.6 km and upper bounds on the radar and optical albedos that are consistent with Icarus' tentative QS classification. The observed circular polarization ratio indicates a very rough near-surface at spatial scales of the order of the radar wavelength. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Delineation of homogeneous precipitation regions (regionalization) is necessary for investigating frequency and spatial distribution of meteorological droughts. The conventional methods of regionalization use statistics of precipitation as attributes to establish homogeneous regions. Therefore they cannot be used to form regions in ungauged areas, and they may not be useful to form meaningful regions in areas having sparse rain gauge density. Further, validation of the regions for homogeneity in precipitation is not possible, since the use of the precipitation statistics to form regions and subsequently to test the regional homogeneity is not appropriate. To alleviate this problem, an approach based on fuzzy cluster analysis is presented. It allows delineation of homogeneous precipitation regions in data sparse areas using large scale atmospheric variables (LSAV), which influence precipitation in the study area, as attributes. The LSAV, location parameters (latitude, longitude and altitude) and seasonality of precipitation are suggested as features for regionalization. The approach allows independent validation of the identified regions for homogeneity using statistics computed from the observed precipitation. Further it has the ability to form regions even in ungauged areas, owing to the use of attributes that can be reliably estimated even when no at-site precipitation data are available. The approach was applied to delineate homogeneous annual rainfall regions in India, and its effectiveness is illustrated by comparing the results with those obtained using rainfall statistics, regionalization based on hard cluster analysis, and meteorological sub-divisions in India. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ballast fouling is created by the breakdown of aggregates or outside contamination by coal dust from coal trains, or from soil intrusion beneath rail track. Due to ballast fouling, the conditions of rail track can be deteriorated considerably depending on the type of fouling material and the degree of fouling. So far there is no comprehensive guideline available to identify the critical degree of fouling for different types of fouling materials. This paper presents the identification of degree of fouling and types of fouling using non-destructive testing, namely seismic surface-wave and ground penetrating radar (GPR) survey. To understand this, a model rail track with different degree of fouling has been constructed in Civil engineering laboratory, University of Wollongong, Australia. Shear wave velocity obtained from seismic survey has been employed to identify the degree of fouling and types of fouling material. It is found that shear wave velocity of fouled ballast increases initially, reaches optimum fouling point (OFP), and decreases when the fouling increases. The degree of fouling corresponding after which the shear wave velocity of fouled ballast will be smaller than that of clean ballast is called the critical fouling point (CFP). Ground penetrating radar with four different ground coupled antennas (500 MHz, 800 MHz, 1.6 GHz and 2.3 GHz) was also used to identify the ballast fouling condition. It is found that the 800 MHz ground coupled antenna gives a better signal in assessing the ballast fouling condition. Seismic survey is relatively slow when compared to GPR survey however it gives quantifiable results. In contrast, GPR survey is faster and better in estimating the depth of fouling. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Many downscaling techniques have been developed in the past few years for projection of station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs) to assess the hydrological impacts of climate change. This article compares the performances of three downscaling methods, viz. conditional random field (CRF), K-nearest neighbour (KNN) and support vector machine (SVM) methods in downscaling precipitation in the Punjab region of India, belonging to the monsoon regime. The CRF model is a recently developed method for downscaling hydrological variables in a probabilistic framework, while the SVM model is a popular machine learning tool useful in terms of its ability to generalize and capture nonlinear relationships between predictors and predictand. The KNN model is an analogue-type method that queries days similar to a given feature vector from the training data and classifies future days by random sampling from a weighted set of K closest training examples. The models are applied for downscaling monsoon (June to September) daily precipitation at six locations in Punjab. Model performances with respect to reproduction of various statistics such as dry and wet spell length distributions, daily rainfall distribution, and intersite correlations are examined. It is found that the CRF and KNN models perform slightly better than the SVM model in reproducing most daily rainfall statistics. These models are then used to project future precipitation at the six locations. Output from the Canadian global climate model (CGCM3) GCM for three scenarios, viz. A1B, A2, and B1 is used for projection of future precipitation. The projections show a change in probability density functions of daily rainfall amount and changes in the wet and dry spell distributions of daily precipitation. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.
Resumo:
The precipitation by Relaxed Arakawa-Schubert cumulus parameterization in a General Circulation Model (GCM) is sensitive to the choice of relaxation parameter or specified cloud adjustment time scale. In the present study, we examine sensitivity of simulated precipitation to the choice of cloud adjustment time scale (tau(adj)) over different parts of the tropics using National Center for Environmental Prediction (NCEP) Seasonal Forecast Model (SFM) during June-September. The results show that a single specified value of tau(adj) performs best only over a particular region and different values are preferred over different parts of the world. To find a relation between tau(adj) and cloud depth (convective activity) we choose six regions over the tropics. Based on the observed relation between outgoing long-wave radiation and tau(adj), we propose a linear cloud-type dependent relaxation parameter to be used in the model. The simulations over most parts of the tropics show improved results due to this newly formulated cloud-type dependent relaxation parameter.
Resumo:
This paper deals with the solution to the problem of multisensor data fusion for a single target scenario as detected by an airborne track-while-scan radar. The details of a neural network implementation, various training algorithms based on standard backpropagation, and the results of training and testing the neural network are presented. The promising capabilities of RPROP algorithm for multisensor data fusion for various parameters are shown in comparison to other adaptive techniques
Resumo:
CuFe2O4 nanograins have been prepared by the chemical co-precipitation technique and calcined in the temperature range of 200-1200 degrees C for 3 h. A wide range of grain sizes has been observed in this sintering temperature range, which has been determined to be 4 to 56 nm. Formation of ferrite has also been confirmed by FTIR measurement through the presence of wide band near 600 and 430 cm(-1) for the samples in the as-dried condition. Systematic variation of wave number has been observed with the variation of the calcination temperature. B-H loops exhibit transition from superparamagnetic to ferrimagnetic state above the calcination temperature of 900 degrees C. Coercivity of the samples at lower calcination temperature of 900 degrees C reduces significantly and tends towards zero coercivity, which is suggestive of superparamagnetic transition for the samples sintered below this temperature. Frequency spectrum of the real and imaginary part of complex initial permeability have been measured for the samples calcined at different temperature, which shows wide range of frequency stability. Curie temperature, T-c has been measured from temperature dependence initial permeability at a fixed frequency of 100 kHz. Although there is small variation of T-c with sintering temperature, the reduction of permeability with temperature drastically reduce for lower sintering temperature, which is in conformity with the change of B-H loops with the variation of sintering temperatures.