67 resultados para Power flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the renormalization group flows of the two terminal conductance of a superconducting junction of two Luttinger liquid wires. We compute the power laws associated with the renormalization group flow around the various fixed points of this system using the generators of the SU(4) group to generate the appropriate parametrization of an matrix representing small deviations from a given fixed point matrix [obtained earlier in S. Das, S. Rao, and A. Saha, Phys. Rev. B 77, 155418 (2008)], and we then perform a comprehensive stability analysis. In particular, for the nontrivial fixed point which has intermediate values of transmission, reflection, Andreev reflection, and crossed Andreev reflection, we show that there are eleven independent directions in which the system can be perturbed, which are relevant or irrelevant, and five directions which are marginal. We obtain power laws associated with these relevant and irrelevant perturbations. Unlike the case of the two-wire charge-conserving junction, here we show that there are power laws which are nonlinear functions of V(0) and V(2kF) [where V(k) represents the Fourier transform of the interelectron interaction potential at momentum k]. We also obtain the power law dependence of linear response conductance on voltage bias or temperature around this fixed point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The critical stream power criterion may be used to describe the incipient motion of cohesionless particles of plane sediment beds. The governing equation relating ``critical stream power'' to ``shear Reynolds number'' is developed by using the present experimental data as well as the data from several other sources. Simultaneously, a resistance equation, relating the ``particle Reynolds number'' to the``shear Reynolds number'' is developed for plane sediment beds in wide channels with little or no transport. By making use of these relations, a procedure is developed to design plane sediment beds such that any two of the four design variables, including particle size, energy/friction slope, flow depth, and discharge per unit width in the channel should be known to predict the remaining two variables. Finally, a straightforward design procedure using design tables/design curves and analytical methods is presented to solve six possible design problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impression creep behaviour of zinc is studied in the range 300 to 500 K and the results are compared with the data from conventional creep tests. The steady-state impression velocity is found to exhibit the same stress and temperature dependence as in conventional tensile creep with the same power law stress exponent. Also studied is the effect of indenter size on the impression velocity. The thermal activation parameters for plastic flow at high temperatures derived from a number of testing techniques agree reasonably well. Grain boundary sliding is shown to be unimportant in controlling the rate of plastic flow at high temperatures. It is observed that the Cottrell-Stokes law is obeyed during high-temperature deformation of zinc. It is concluded that a mechanism such as forest intersection involving attractive trees controls the high-temperature flow rather than a diffusion mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The velocity profile in turbulent pipe flow is usually divided into two regions, a wall or inner region and a core or outer region. For the inner region, the viscosity and wall shear stress are the important parameters governing the velocity distribution whereas for the outer region, the wall reduces the velocity below the maximum velocity independent of viscosity. In the present work, a velocity model is proposed for turbulent flow in the wall region of a pipe covering the entire transition from smooth to rough flows. Coupling this model for the wall region with the power law velocity model for the core region, an equation for the friction factor is obtained. The model constants are evaluated by using Nikuradse's experiments in the fully smooth and rough turbulent flows. The model shows good agreement with the friction factor and the velocity profiles obtained by Nikuradse for the transition region of turbulent flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical studies have been carried out to examine internal flow choking in the inert simulators of a dual-thrust motor. Using a two-dimensional k-omega turbulence model, detailed parametric studies have been carried out to examine aerodynamic choking and the existence of a fluid throat at the transition region during the startup transient of dual-thrust motors. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second-order-implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-averaged, Navier-Stokes equations is employed. It was observed that, at the subsonic inflow conditions, there is a possibility of the occurrence of internal flow choking in dual-thrust motors due to the formation of a fluid throat at the beginning of the transition region induced by area blockage caused by boundary-layer-displacement thickness. It has been observed that a 55% increase in the upstream port area of the dual-thrust motor contributes to a 25% reduction in blockage factor at the transition region, which could negate the internal How choking and supplement with an early choking of the dual-thrust motor nozzle. If the height of the upstream port relative to the motor length is too small, the developing boundary layers from either side of the port can interact, leading to a choked,flow. On the other hand, if the developing boundary layers are far enough apart, then choking does not occur. The blockage factor is greater in magnitude for the choked case than for the unchoked case. More tangible explanations are presented in this paper for the boundary-layer blockage and the internal flow choking in dual-thrust motors, which hitherto has been unexplored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An aeration process in ail activated sludge plant is a continuous-flow system. In this system, there is a steady input flow (flow from the primary clarifier or settling tank with some part from the secondary clarifier or secondary settling tank) and output flow connection to the secondary clarifier or settling tank. The experimental and numerical results obtained through batch systems can not be relied on and applied for the designing of a continuous aeration tank. In order to scale up laboratory results for field application, it is imperative to know the geometric parameters of a continuous system. Geometric parameters have a greater influence on the mass transfer process of surface aeration systems. The present work establishes the optimal geometric configuration of a continuous-flow surface aeration system. It is found that the maintenance of these optimal geometric parameters systems result in maximum aeration efficiency. By maintaining the obtained optimal geometric parameters, further experiments are conducted in continuous-flow surface aerators with three different sizes in order to develop design curves correlating the oxygen transfer coefficient and power number with the rotor speed. The design methodology to implement the presently developed optimal geometric parameters and correlation equations for field application is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the investigations of laminar free convection heat transfer from vertical cylinders and wires whose surface temperature varies along the height according to the relation TW - T∞ = Nxn. The set of boundary layer partial differential equations and the boundary conditions are transformed to a more amenable form and solved by the process of successive substitution. Numerical solutions of the first approximated equations (two-point nonlinear boundary value type of ordinary differential equations) bring about the major contribution to the problem (about 95%), as seen from the solutions of higher approximations. The results reduce to those for the isothermal case when n=0. Criteria for classifying the cylinders into three broad categories, viz., short cylinders, long cylinders and wires, have been developed. For all values of n the same criteria hold. Heat transfer correlations obtained for short cylinders (which coincide with those of flat plates) are checked with those available in the literature. Heat transfer and fluid flow correlations are developed for all the regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The nonlinear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0 < t* < 1 and reach the steady-state values for t* >= 4. (C) 2010 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we derive a fast, novel time-domain algorithm to compute the nth-order moment of the power spectral density of the photoelectric current as measured in laser-Doppler flowmetry (LDF). It is well established that in the LDF literature these moments are closely related to fundamental physiological parameters, i.e. concentration of moving erythrocytes and blood flow. In particular, we take advantage of the link between moments in the Fourier domain and fractional derivatives in the temporal domain. Using Parseval's theorem, we establish an exact analytical equivalence between the time-domain expression and the conventional frequency-domain counterpart. Moreover, we demonstrate the appropriateness of estimating the zeroth-, first- and second-order moments using Monte Carlo simulations. Finally, we briefly discuss the feasibility of implementing the proposed algorithm in hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized two‐dimensional flow‐radiation coupled model to extract power from a gasdynamic laser is proposed. The model is used for the study of power extraction from a 9.4‐μm CO2 downstream‐mixing gasdynamic laser, where a cold CO2+H2 stream is mixed with a vibrationally excited N2 stream at the nozzle exits. This model is developed by coupling radiation with the two‐dimensional, unsteady, laminar and viscous flow modeling needed for such systems. The analysis showed that the steady‐state value of 9.4‐μm intensity as high as 5×107 W/m2 can be obtained from the system studied. The role of H2 relaxant in the power extraction process has also been investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxygen transfer rate and the corresponding power requirement to operate the rotor are vital for design and scale-up of surface aerators. The aeration process can be analyzed in two ways such as batch and continuous systems. The process behaviors of batch and continuous flow systems are different from each other. The experimental and numerical results obtained through the batch systems cannot be relied on and applied for the designing of the continuous aeration tank. Based on the experimentation on batch and continuous type systems, the present work compares the performance of both the batch and continuous surface aeration systems in terms of their oxygen transfer capacity and power consumption. A simulation equation developed through experimentation has shown that continuous flow surface aeration systems are taking more energy than the batch systems. It has been found that batch systems are economical and better for the field application but not feasible where large quantity of wastewater is produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonsimilar non-Darcy mixed convection flow about a heated horizontal surface in a saturated porous medium has been studied when the surface temperature is a power function of distance (Tw = T∞ ± Axλ). The analysis is performed for the cases of parallel and stagnation flows with favourable induced pressure gradient. The partial differential equations governing the flow have been solved numerically using the Keller box method. The heat transfer is enhanced due to the buoyancy parameter and wall temperature, but the non-Darcy parameter reduces it. For non-Darcy flow, the similarity solution exists only for the case of parallel flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cylindrical specimens of commercial pure titanium have been compressed at strain rates in the range of 0.1 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates of 10 and 100 s-1, the specimens exhibited adiabatic shear bands. At lower strain rates, the material deformed in an inhomogeneous fashion. These material-related instabilities are examined in the light of the ''phenomenological model'' and the ''dynamic materials mode.'' It is found that the regime of adiabatic shear band formation is predicted by the phenomenological model, while the dynamic materials model is able to predict the inhomogeneous deformation zone. The criterion based on power partitioning is competent to predict the variations within the inhomogeneous deformation zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the three-dimensional flow field entering and leaving a mixed flow pump of non-dimensional specific speed k = 1.89 [N-s = 100 r/min (metric)] are discussed as a function of flowrate. Flow reversal at inlet at reduced flows is seen to result in abnormally high total pressures in the casing region, but causes no noticeable discontinuities on the head-flow characteristics. Inlet prerotation is associated with the transport of angular momentum by the reversal eddy and begins with the initiation of flow reversal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements in a mixed flow pump of non-dimensional specific speed k = 1.89[N-S = 100 r/min (metric)] are analysed to give loss distribution and local hydraulic efficiencies at different flowrates and values of tip clearance. Fairly close agreement is obtained between the relative flow angles leaving the blading as predicted by simple deviation and slip models and derived from the measurements. The head developed is broken up into two parts: that contributed by Coriolis action and that associated with blade circulation. It is suggested that lift coefficients based on blade circulation are of limited value in selecting blade profiles. The variation of pump efficiency with tip clearance is greater than that reported for centrifugal pumps.