144 resultados para Potassium fertiliser
Resumo:
Modification of the room temperature phase (IV-III) of ammonium nitrate (AN) has been attempted using a variety of potassium salts namely, KF, KCl, KI, KNO3, K2CO3, K2SO4, KSCN and K2Cr2O7. No phase transition was observed when AN containing 1-2% by mass of these potassium salts is heated from room temperature (25 degrees C) onwards in DTA and DSC scans, but the linear expansion due to phase transition was still observable in TMA measurements. Complete arrest of the linear expansion occurs only when a higher concentration of the additive is used. Similarly, in thermal cycling experiments, complete phase modification in the temperature range -80 to 100 degrees C occurs only with a higher percentage of the potassium salt. The extent of modification, however, is found to be dependent both on the concentration, and the type of the anion. Potassium dichromate when used as an additive modifies the phase as well as the decomposition pattern of AN.
Resumo:
Potassium titanyl phosphate (KTP) and its isomorphs have received enormous attention in the last 2 decades. In particular, KTP assumes importance due to its large nonlinear optic and electrooptic coefficients together with the broad thermal and angular acceptance for second harmonic generation. This article provides an overview of the material aspects, structural, physical, and chemical properties and device feasibility of the KTP family of crystals. Some of the current areas of research and development along with their significance in understanding the physical properties as well as device applications are addressed. Optical waveguide fabrication processes and characteristics with their relevance to the present-day technology are highlighted. Studies performed so far have enabled us to understand the fundamental aspects of these materials and what needs to be pursued vigorously is the exploitation of their device applications to the maximum extent.
Resumo:
A two step silicon surface texturing, consisting of potassium hydroxide (KOH) etching followed by tetra-methyl ammonium hydroxide etching is presented. This combined texturing results in 13.8% reflectivity at 600 nm compared to 16.1% reflectivity for KOH etching due to the modification of microstructure of etched pyramids. This combined etching also results in significantly lower flat-band voltage (V-FB) (-0.19V compared to -1.3 V) and interface trap density (D-it) (2.13 x 10(12) cm(-2) eV(-1) compared to 3.2 x 10(12) cm(-2) eV(-1)). (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4776733]
Resumo:
We report the electrical transport properties of silver-, potassium-, and magnesium-doped hydroxyapatites (HAs). While Ag+ or K+ doping to HA enhances the conductivity, Mg+2 doping lowers the conductivity when compared with undoped HA. The mechanism behind the observed differences in ionic conductivity has been discussed using the analysis of high-temperature frequency-dependent conductivity data, Cole-Cole plots of impedance data as well as on the basis of the frequency dependence of the imaginary part (M) of the complex electric modulus. The f(max) of modulus M decreased in silver- and potassium-doped samples in comparison with the undoped HA.
Resumo:
Purpose: Reverse iontophoresis (RI) is one of the potential techniques used to monitor the concentration of various analytes in body fluids non -invasively. Transdermal extraction of potassium is investigated using RI. In the present work, the effect of potassium on stratum corneum (SC) during RI, feasibility of RI for continuous monitoring of potassium, and use of potassium as internal standard in RI, are investigated. Methods: Tape stripping experiment is carried out to find potassium concentration in SC. RI is carried out continuously for 180 min without passive diffusion and after passive diffusion for 60 min. Skin impedance measurements are done at 20 Hz and 20 kHz. Results: Potassium is found to be in the range 300-650 nmol/cm(2) on SC by tape stripping experiment. Correlation coefficient between blood potassium and extracted potassium through RI after passive diffusion (R-2 = 0.5870) is more than without passive diffusion (R-2 = 0.5117). The skin impedance measurement shows that RI has more effect on SC than superficial layer of SC during RI. Conclusion: The present investigations conclude that it is possible to monitor potassium continuously through RI and using potassium as internal standard in RI.
Resumo:
Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.
Resumo:
Reaction of 6-acetoxy-5-bromomethylquinoline (1c) and 2-bromomethyl-4-(2'-pyridyl)phenyl acetate (2b) with tetrachlorocatechol in acetone in the presence of anhydrous potassium carbonate resulted in the formation of diastereomeric products 3c, 3d, 4e and 4f.
Resumo:
The ultrasonic degradation of poly(acrylic acid), a water-soluble polymer, was studied in the presence of persulfates at different temperatures in binary solvent Mixtures of methanol and water. The degraded samples were analyzed by gel permeation chromatography for the time evolution of the molecular weight distributions. A continuous distribution kinetics model based on midpoint chain scission was developed, and the degradation rate coefficients were determined. The decline in the rate of degradation of poly(acrylic acid) with increasing temperature and with an increment in the methanol content in the binary solvent mixture of methanol and water was attributed to the increased vapor pressure of the solutions. The experimental data showed an augmentation of the degradation rate of the polymer with increasing oxidizing agent (persulfate) concentrations. Different concentrations of three persulfates-potassium persulfate, ammonium persulfate, and sodium persulfate-were used. It was found that the ratio of the polymer degradation rate coefficient to the dissociation rate constant of the persulfate was constant. This implies that the ultrasonic degradation rate of poly(acrylic acid) can be determined a priori in the presence of any initiator.
Resumo:
A number of studies in yeast have shown that DNA topoisomerase TI is essential for chromosome condensation and disjunction during mitosis at the metaphase/anaphase transition and meiosis I. Accordingly, kinetic and mechanistic studies have implied a role for topoisomerase rr in chromosome disjunction. As a step toward understanding the nature and role of topoisomerase II in a mammalian germline in vivo, we have purified topoisomerase II from rat testis to homogeneity and ascertained several of its catalytic activities in conjunction with that of the purified enzyme from liver. The purified enzymes appeared to be monomers under denaturing conditions; however, they differed in their relative molecular mass. Topoisomerase II from testis and liver have apparent molecular masses of 150 +/- 10 kDa and 160 +/- 10 kDa, respectively. The native molecular mass of testis topoisomerase II as assayed by immunoblot analysis of cell-foe extracts, prepared in the presence of SDS and a number of protease inhibitors, corroborated with the size of the purified enzyme. Both enzymes are able to promote decatenation and relax supercoiled DNA substrates in an ATP and Mg2+-dependent manner. However, quantitative comparison of catalytic properties of topoisomerase II from testis with that of the enzyme from liver displayed significant differences in their efficiencies. Optimal pH values for testis enzyme are 6.5 to 8.5 while they are 6 to 7.5 for the liver enzyme. Intriguingly, the relaxation activity of liver topoisomerase II was inhibited by potassium glutamate at 1 M, whereas testis enzyme required about half its concentration. These findings argue that topoisomerase II from rat testis is structurally distinct from that of its somatic form and the functional differences between the two enzymes parallels with the physiological environment that is unique to these two tissues.
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.
Resumo:
The specific objective of this paper is to develop a state space model of a tubular ammonia reactor which is the heart of an ammonia plant in a fertiliser complex. A ninth order model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. The lumped model is chosen such that the steady state temperature at the exit of the catalyst bed computed from the simplified state space model is close enough to the one computed from the nonlinear steady state model. The model developed in this paper is very useful for the design of continuous/discrete versions of single variable/multivariable control algorithms.
Resumo:
Hexafluorodisilane has been prepared by the fluorination of hexachlorodisilane or hexabromodisilane by potassium fluoride in boiling acetonitrile, in yields approximating 45 and 60% respectively. Hexafluorodisilane has been characterised by infrared spectral data, vapour density measurements and analytical data. Both hexafluorodisilane and hexachlorodisilane are found to react with sulfur trioxide when heated to 400°C for 12 h. The products of reaction are silicon tetrafluoride, silica and sulfur dioxide with hexafluorodisilane while hexachlorodisilane in addition gives rise to hexachlorodisiloxane.
Resumo:
Valinomycin, an ionophore of considerable interest for its ion selectivity, and its K+, Mg2+, Ba2+, and Ca2+ complexes were studied by Raman spectroscopy. Each complex has a characteristic spectrum which differs from that of uncomplexed valinomycin, suggesting several distinct structures for each of the metal-valinomycin complexes. The biologically active potassium complex shows the most significant changes in its spectrum, especially in the intensity of the symmetric C---H stretching vibration of CH3 and the convergence of the two ester carbonyl stretching vibration bands into one complex formation. These results are due to the unique orientation of the ester carbonyl groups toward the caged potassium ion and the resulting more free rotation of isopropyl side chains. The divalent cation-valinomycin complexes examined showed spectra which differed in each case uniquely from both valinomycin and its complex with potassium.
Resumo:
A rapid quenching technique with a quenching rate of roughly 106°C/sec has been developed to prepare glassy samples of ABO3 type materials. Glasses of potassium lithium niobate have been prepared by this technique. These glasses have been characterized by x-ray diffraction, electron diffraction and differential scanning calorimetry techniques to assess the quality of the obtained glasses.
Resumo:
Whole cells, homogenates and mitochondrial obtained from the livers of albino rats which were starved for 6 days or more showed a 50% decrease in oxidative activity. The decrease could be corrected by the addition of cytochrome c in vitro. The phosphorylative activity of mitochondria remained unaffected. The decrease in oxidative rate was not observed when starving animals were given the anti-hypercholesterolaemic drug clofibrate. The total cellular concentration of cytochrome c was not affected by starvation. However, the concentration of the pigment in hepatic mitochondria isolated from starving animals was less than half that in normal mitochondria. Clofibrate-treated animals did not show a decreased concentration of cytochrome c in hepatic mitochondria. Mitochondria isolated from starving animals, though deficient in cytochrome c, did not show any decrease in succinate dehydrogenase activity or in the rate of substrate-dependent reduction of potassium ferricyanide or attendant phosphorylation. In coupled mitochondria, ferricyanide may not accept electrons from the cytochrome c in the respiratory chain. Starvation decreases the concentration of high-affinity binding sites for cytochrome c on the mitochondrial membrane. The dissociation constant increases in magnitude.