101 resultados para Polypeptide N-acetylgalactosaminyltransferases
Resumo:
The linear polypeptide antibiotic alamethicin is known to form channels in artificial lipid membranes. Synthetic 13- and 17-residue alamethicin fragments, labelled with a fluorescent dansyl group at the N-terminus, have been shown to translocate divalent cations across phospholipid membranes and to uncouple oxidative phosphorylation in rat liver mitochondria, in a manner analogous to the parent peptides. From studies of the aqueous phase aggregation behavior of the peptides, as well as their interaction with rat liver mitochondria, it is concluded that the interaction of the peptides with membranes is a complex process, probably involving both aqueous and membrane phase aggregation.
Resumo:
The isolation and characterization of the initial intermediates formed during the irreversible acid denaturation of enzyme Ribonuclease A are described. The products obtained when RNase A is maintained in 0.5 M HCl at 30° for periods up to 20 h have been analyzed by ion-exchange chromatography on Amberlite XE-64. Four distinct components were found to elute earlier to RNase A; these have been designated RNase Aa2, Aa1c, Aa1b, and Aa1a in order of their elution. With the exception of RNase Aa2, the other components are nearly as active as RNase A. Polyacrylamide gel electrophoresis at near-neutral pH indicated that RNase Aa1a, Aa1b, and Aa1c are monodeamidated derivatives of RNase A; RNase Aa2 contains, in addition, a small amount of a dideamidated component. RNase Aa2, which has 75% enzymic activity as compared to RNase A, consists of dideamidated and higher deamidated derivatives of RNase A. Except for differences in the proteolytic susceptibilities at an elevated temperature or acidic pH, the monodeamidated derivatives were found to have very nearly the same enzymic activity and the compact folded structure as the native enzyme. Fingerprint analyses of the tryptic peptides of monodeamidated derivatives have shown that the deamidations are restricted to an amide cluster in the region 67–74 of the polypeptide chain. The initial acid-catalyzed deamidation occurs in and around the 65–72 disulfide loop giving rise to at least three distinct monodeamidated derivatives of RNase A without an appreciable change in the catalytic activity and conformation of the ribonuclease molecule. Significance of this specific deamidation occurring in highly acidic conditions, and the biological implications of the physiological deamidation reactions of proteins are discussed.
Resumo:
The possible nonplanar distortions of the amide group in formamide, acetamide, N-methylacetamide, and N-ethylacetamide have been examined using CNDO/2 and INDO methods. The predictions from these methods are compared with the results obtained from X-ray and neutron diffraction studies on crystals of small open peptides, cyclic peptides, and amides. It is shown that the INDO results are in good agreement with observations, and that the dihedral angles N and defining the nonplanarity of the amide unit are correlated approximately by the relation N = -2, while C is small and uncorrelated with . The present study indicates that the nonplanar distortions at the nitrogen atom of the peptide unit may have to be taken into consideration, in addition to the variation in the dihedral angles (,), in working out polypeptide and protein structures.
Resumo:
Underlying the unique structures and diverse functions of proteins area vast range of amino-acid sequences and a highly limited number of folds taken up by the polypeptide backbone. By investigating the role of noncovalent connections at the backbone level and at the detailed side-chain level, we show that these unique structures emerge from interplay between random and selected features. Primarily, the protein structure network formed by these connections shows simple (bond) and higher order (clique) percolation behavior distinctly reminiscent of random network models. However, the clique percolation specific to the side-chain interaction network bears signatures unique to proteins characterized by a larger degree of connectivity than in random networks. These studies reflect some salient features of the manner in which amino acid sequences select the unique structure of proteins from the pool of a limited number of available folds.
Resumo:
Sesbania mosaic virus (SMV) is an isometric, ss-RNA plant virus found infecting Sesbania grandiflora plants in fields near Tirupathi, South India. The virus particles, which sediment at 116 S at pH 5.5, swell upon treatment with EDTA at pH 7.5 resulting in the reduction of the sedimentation coefficient to 108 S. SMV coat protein amino acid sequence was determined and found to have approximately 60% amino acid sequence identity with that of southern bean mosaic virus (SBMV). The amino terminal 60 residue segment, which contains a number of positively charged residues, is less well conserved between SMV and SBMV when compared to the rest of the sequence. The 3D structure of SMV was determined at 3.0 Å resolution by molecular replacement techniques using SBMV structure as the initial phasing model. The icosahedral asymmetric unit was found to contain four calcium ions occurring in inter subunit interfaces and three protein subunits, designated A, B and C. The conformation of the C subunit appears to be different from those of A and B in several segments of the polypeptide. These observations coupled with structural studies on SMV partially depleted of calcium suggest a plausible mechanisms for the initiation of the disassembly of the virus capsid.
Resumo:
In the synchronous embryogenesis system of sandalwood developed in our laboratory, we observed that the early events of differentiation from freshly induced callus (stage 0) are accomplished in three distinct stages viz., preglobular masses (stage 1), globular embryos (stage 2), and bipolar embryos (stage 3). Transition from stage 0 to 1 was accomplished using 2,4-D and involves a stage specific appearance of two polypeptides of 15 and 30 kDa molecular weight. A 24 kDa polypeptide that was detected as a marked band in extracts of primary callus was not detected in stages 1, 2, and 3. Further, the tissue level of a 50 kDa glycoprotein decreased during transition from stage 2 to stage 3. However, the levels of glycoproteins in the medium were markedly higher in stage 0 cultures compared to those in stage 1. The activities of a protein kinase, glycosidase, and xylanase increased markedly with progressing embryogenesis. Our observations suggest that in addition to being controlled at the level of stage-specific gene expression, somatic embryogenesis in sandalwood is also regulated at the level of controls on cell wall flexibility and posttranslational changes in the pool of preexisting proteins.
Resumo:
The novel multidomain organization in the multimeric Escherichia coli AHAS I (ilvBN) enzyme has been dissected to generate polypeptide fragments. These fragments when cloned, expressed and purified reassemble in the presence of cofactors to yield a catalytically competent enzyme. Structural characterization of AHAS has been impeded due to the fact that the holoenzyme is prone to dissociation leading to heterogeneity in samples. Our approach has enabled the structural characterization using high-resolution nuclear magnetic resonance methods. Near complete sequence specific NMR assignments for backbone H-N, N-15, C-13 alpha and C-13(beta) atoms of the FAD binding domain of ilvB have been obtained on samples isotopically enriched in H-2, C-13 and N-15. The secondary structure determined on the basis of observed C-13(alpha) secondary chemical shifts and sequential NOEs indicates that the secondary structure of the FAD binding domain of E. coli AHAS large Subunit (ilvB) is similar to the structure of this domain in the catalytic subunit of yeast AHAS. Protein-protein interactions involving the regulatory subunit (ilvN) and the domains of the catalytic subunit (ilvB) were studied using circular dichroic and isotope edited solution nuclear magnetic resonance spectroscopic methods. Observed changes in circular dichroic spectra indicate that the regulatory subunit (ilvN) interacts with ilvB alpha and ilvB beta domains of the catalytic subunit and not with the ilvB gamma domain. NMR chemical shift mapping methods show that ilvN binds close to the FAD binding site in ilvB beta and proximal to the intrasubunit ilvB alpha/ilvB beta domain interface. The implication of this interaction on the role of the regulatory subunit oil the activity of the holoenzyme is discussed. NMR studies of the regulatory domains show that these domains are structured in solution. Preliminary evidence for the interaction of ilvN with the metabolic end product of the pathway, viz., valine is also presented.
Resumo:
Nature has used the all-alpha-polypeptide backbone of proteins to create a remarkable diversity of folded structures. Sequential patterns of 20 distinct amino adds, which differ only in their side chains, determine the shape and form of proteins. Our understanding of these specific secondary structures is over half a century old and is based primarily on the fundamental elements: the Pauling alpha-helix and beta-sheet. Researchers can also generate structural diversity through the synthesis of polypeptide chains containing homologated (omega) amino acid residues, which contain a variable number of backbone atoms. However, incorporating amino adds with more atoms within the backbone introduces additional torsional freedom into the structure, which can complicate the structural analysis. Fortunately, gabapentin (Gpn), a readily available bulk drug, is an achiral beta,beta-disubstituted gamma amino add residue that contains a cyclohexyl ring at the C-beta carbon atom, which dramatically limits the range of torsion angles that can be obtained about the flanking C-C bonds. Limiting conformational flexibility also has the desirable effect of increasing peptide crystallinity, which permits unambiguous structural characterization by X-ray diffraction methods. This Account describes studies carried out in our laboratory that establish Gpn as a valuable residue in the design of specifically folded hybrid peptide structures. The insertion of additional atoms into polypeptide backbones facilitates the formation of intramolecular hydrogen bonds whose directionality is opposite to that observed in canonical alpha-peptide helices. If hybrid structures mimic proteins and biologically active peptides, the proteolytic stability conferred by unusual backbones can be a major advantage in the area of medicinal chemistry. We have demonstrated a variety of internally hydrogen-bonded structures in the solid state for Gpn-containing peptides, including the characterization of the C-7 and C-9 hydrogen bonds, which can lead to ribbons in homo-oligomeric sequences. In hybrid alpha gamma sequences, district C-12 hydrogen-bonded turn structures support formation of peptide helices and hairpins in longer sequences. Some peptides that include the Gpn residue have hydrogen-bond directionality that matches alpha-peptide helices, while others have the opposite directionality. We expect that expansion of the polypeptide backbone will lead to new classes of foldamer structures, which are thus far unknown to the world of alpha-polypeptides. The diversity of internally hydrogen-bonded structures observed in hybrid sequences containing Gpn shows promise for the rational design of novel peptide structures incorporating hybrid backbones.
Resumo:
We examined whether C-terminal residues of soluble recombinant FtsZ of Mycobacterium tuberculosis (MtFtsZ) have any role in MtFtsZ polymerization in vitro. MtFtsZ-delta C1, which lacks C-terminal extreme Arg residue (underlined in the C-terminal extreme stretch of 13 residues, DDDDVDVPPFMRR), but retaining the penultimate Arg residue (DDDDVDVPPFMR), polymerizes like full-length MtFtsZ in vitro. However, MtFtsZ-delta C2 that lacks both the Arg residues at the C-terminus (DDDDVDVPPFM), neither polymerizes at pH 6.5 nor forms even single- or double-stranded filaments at pH 7.7 in the presence of 10 mM CaCl2. Neither replacement of the penultimate Arg residue, in the C-terminal Arg deletion mutant DDDDVDVPPFMR, with Lys or His or Ala or Asp (DDDDVDVPPFMK/H/A/D) enabled polymerization. Although MtFtsZ-delta C2 showed secondary and tertiary structural changes, which might have affected polymerization, GTPase activity of MtFtsZ-delta C2 was comparable to that of MtFtsZ. These data suggest that MtFtsZ requires an Arg residue as the extreme C-terminal residue for polymerization in vitro. The polypeptide segment containing C-terminal 67 residues, whose coordinates were absent from MtFtsZ crystal structure, was modeled on tubulin and MtFtsZ dimers. Possibilities for the influence of the C-terminal Arg residues on the stability of the dimer and thereby on MtFtsZ polymerization have been discussed.
Resumo:
Background: The members of cupin superfamily exhibit large variations in their sequences, functions, organization of domains, quaternary associations and the nature of bound metal ion, despite having a conserved beta-barrel structural scaffold. Here, an attempt has been made to understand structure-function relationships among the members of this diverse superfamily and identify the principles governing functional diversity. The cupin superfamily also contains proteins for which the structures are available through world-wide structural genomics initiatives but characterized as ``hypothetical''. We have explored the feasibility of obtaining clues to functions of such proteins by means of comparative analysis with cupins of known structure and function. Methodology/Principal Findings: A 3-D structure-based phylogenetic approach was undertaken. Interestingly, a dendrogram generated solely on the basis of structural dissimilarity measure at the level of domain folds was found to cluster functionally similar members. This clustering also reflects an independent evolution of the two domains in bicupins. Close examination of structural superposition of members across various functional clusters reveals structural variations in regions that not only form the active site pocket but are also involved in interaction with another domain in the same polypeptide or in the oligomer. Conclusions/Significance: Structure-based phylogeny of cupins can influence identification of functions of proteins of yet unknown function with cupin fold. This approach can be extended to other proteins with a common fold that show high evolutionary divergence. This approach is expected to have an influence on the function annotation in structural genomics initiatives.
Resumo:
Mycobacterium leprae recA harbors an in-frame insertion sequence that encodes an intein homing endonuclease (PI-MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their ctive center. A common feature of LAGLIDADG-type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI-MleI is distinctive from other members of the family of LAGLIDADG-type HEases for its modular structure with functionally separable domains for DNA-binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI-MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active-site residues essential for DNA target site recognition and double-stranded DNA cleavage, we performed site-directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild-type PI-MleI and its variants disclosed that the two amino acid residues, Asp(122) (in Block C) and Asp(193) (in functional Block E), are crucial to the double-stranded DNA endonuclease activity, whereas Asp(218) (in pseudo-Block E) is not. However, despite the reduced catalytic activity, the PI-MleI variants, like the wild-type PI-MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA-binding affinities, but abolished the double-stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double-stranded DNA cleavage activity, compared with the wild-type PI-MleI. These results provide compelling evidence that Asp(122) and Asp(193) in DOD motif I and II, respectively, are bona fide active-site residues essential for DNA cleavage activity. The implications of these results are discussed in this report.
Resumo:
The molecular mechanism of helix nucleation in peptides and proteins is not yet understood and the question of whether sharp turns in the polypeptide backbone serve as nuclei for protein folding has evoked controversy1,2. A recent study of the conformation of a tetrapeptide containing the stereochemically constrained residue alpha-aminoisobutyric acid, both in solution and the solid state, yielded a structure consisting of two consecutive beta-turns, leading to an incipient 310 helical conformation3,4. This led us to speculate that specific tri- and tetra-peptide sequences may indeed provide a helical twist to the amino-terminal segment of helical regions in proteins and provide a nucleation site for further propagation. The transformation from a 310 helical structure to an alpha-helix should be facile and requires only small changes in the phi and psi conformational angles and a rearrangement of the hydrogen bonding pattern5. If such a mechanism is involved then it should be possible to isolate an incipient 310 helical conformation in a tripeptide amide or tetrapeptide sequence, based purely on the driving force derived from short-range interactions. We have synthesised and studied the model peptide pivaloyl-Pro-Pro-Ala-NHMe (compound I) and provide here spectroscopic evidence for a 310 helical conformation in compound I.
Resumo:
The red genes of phage lambda specify two proteins, exonuclease and beta protein, which are essential for its general genetic recombination in recA- cells. These proteins seem to occur in vivo as an equimolar complex. In addition, beta protein forms a complex with another polypeptide, probably of phage origin, of Mr 70,000. The 70-kDa protein appears to be neither a precursor nor an aggregated form of either exonuclease or beta protein, since antibodies directed against the latter two proteins failed to react with 70-kDa protein on Ouchterlony double diffusion analysis. beta protein promotes Mg2+-dependent renaturation of complementary strands (Kmiec, E., and Holloman, W. K. (1981) J. Biol. Chem. 256, 12636-12639). To look for other pairing activities of beta protein, we developed methods of purification to free it of associated exonuclease. Exonuclease-free beta protein appeared unable to cause the pairing of a single strand with duplex DNA; however, like Escherichia coli single strand binding protein (SSB), beta protein stimulated formation of joint molecules by recA protein from linear duplex DNA and homologous circular single strands. Like recA protein, but unlike SSB, beta protein promoted the joining of the complementary single-stranded ends of phage lambda DNA. beta protein specifically protected single-stranded DNA from digestion by pancreatic DNase. The half-time for renaturation catalyzed by beta protein was independent of DNA concentration, unlike renaturation promoted by SSB and spontaneous renaturation, which are second order reactions. Thus, beta protein resembles recA protein in its ability to bring single-stranded DNA molecules together and resembles SSB in its ability to reduce secondary structure in single-stranded DNA.
Resumo:
We explore the fuse of information on co-occurrence of domains in multi-domain proteins in predicting protein-protein interactions. The basic premise of our work is the assumption that domains co-occurring in a polypeptide chain undergo either structural or functional interactions among themselves. In this study we use a template dataset of domains in multidomain proteins and predict protein-protein interactions in a target organism. We note that maximum number of correct predictions of interacting protein domain families (158) is made in S. cerevisiae when the dataset of closely related organisms is used as the template followed by the more diverse dataset of bacterial proteins (48) and a dataset of randomly chosen proteins (23). We conclude that use of multi-domain information from organisms closely-related to the target can aid prediction of interacting protein families.
Resumo:
To understand structural and thermodynamic features of disulfides within an alpha-helix, a non-redundant dataset comprising of 5025 polypeptide chains containing 2311 disulfides was examined. Thirty-five examples were found of intrahelical disulfides involving a CXXC motif between the N-Cap and third helical positions. GLY and PRO were the most common amino acids at positions 1 and 2, respectively. The N-Cap residue for disulfide bonded CXXC motifs had average values of (-112 +/- 25.2 degrees, 106 +/- 25.4 degrees). To further explore conformational requirements for intrahelical disulfides, CYS pairs were introduced at positions N-Cap-3; 1,4; 7,10 in two helices of an Escherichia coli thioredoxin mutant lacking its active site disulfide (nSS Trx). In both helices, disulfides formed spontaneously during purification only at positions N-Cap-3. Mutant stabilities were characterized by chemical denaturation studies (in both oxidized and reduced states) and differential scanning calorimetry (oxidized state only). All oxidized as well as reduced mutants were destabilized relative to nSS Trx. All mutants were redox active, but showed decreased activity relative to wild-type thioredoxin. Such engineered disulfides can be used to probe helix start sites in proteins of unknown structure and to introduce redox activity into proteins. Conversely, a protein with CYS residues at positions N-Cap and 3 of an alpha-helix is likely to have redox activity.