191 resultados para Platinum(II) complex
Resumo:
A new dinuclear cadmium(II) complex, Cd(L)(NCS)](2) (1) has been synthesized using a potentially tetradentate Schiff base ligand HL, 2-((E)-(2-(diethylamino) ethylimino) methyl)-6-methoxyphenol, obtained by the condensation of 2-diethylaminoethylamine and o-vanillin, and characterized by different physicochemical techniques. Crystal structure of the title complex was unambiguously established by single crystal X-ray diffraction which reveals that metal centers are connected by bridging phenolato and chelating methoxy oxygen atoms of the coordinating Schiff bases and embedded in severely distorted octahedral geometries. Fluorescence properties of the ligand and its complex, studied at room temperature indicate that later may serve as strong fluorescent
Resumo:
Platinum(II) complexes Pt(pap)(an-cat)] (1) and Pt(pap)(py-cat)] (2) with 2-(phenylazo)pyridine (pap), 4-2-(anthracen-9-ylmethylene)amino]ethyl]benzene-1,2-diol (H(2)an-cat), and 4-2-(pyren-1-ylmethylene)amino]ethyl]benzene-1,2-diol (H2py-cat) were prepared, and their photoinduced cytotoxicity was studied. The complexes were found to release catecholate ligand in the presence of excess glutathione (GSH), resulting in cellular toxicity in the cancer cells. The catecholate complex Pt(pap)(cat)] (3) was prepared and used as a control. Complex 3, which is structurally characterized by X-ray crystallography, has platinum(II) in a distorted square-planar geometry. The complexes are redox-active, showing responses near 0.6 and 1.0 V versus SCE in N,N-dimethylformamide/0.1 M tetrabutylammonium perchlorate corresponding to a two-step catechol oxidation process and at -0.3 and -1.3 V for reduction of the pap ligand. Complex 1 showed remarkable light-induced cytotoxicity in HaCaT (human skin keratinocytes) and MCF-7 (human breast cancer) cells, giving IC50 value of similar to 5 mu M in visible light of 400-700 nm and >40 mu M in the dark. The 2',7'-dichlorofluorescein diacetate (DCFDA) assay showed the generation of reactive oxygen species (ROS), which seems to trigger apoptosis, as is evident from the annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay. The fluorescence microscopic images showed significant nuclear localization of the complexes and free ligands. A mechanistic study revealed possible reduction of the coordinated azo bond of pap by cellular GSH, releasing the catecholate ligand and resulting in remarkable photochemotherapeutic action of the complexes.
Resumo:
In this article, we present the detailed investigations on platinum related midgap state corresponding to E-c -0.52 eV probed by deep level transient spectroscopy. By irradiating the platinum doped samples with high-energy (1.1 MeV) gamma rays, we observed that the concentration of the midgap state increases and follows a square dependence with irradiation dose. However, the concentration of the acceptor corresponding to E-c -20.28 eV remained constant. Furthermore, from the studies on passivation by atomic hydrogen and thermal reactivation, we noticed that the E-c -0.52 eV level reappears in the samples annealed at high temperatures after hydrogenation. The interaction of platinum with various defects and the qualitative arguments based on the law of mass action suggest that the platinum related midgap defect might possibly correspond to the interstitial platinum-divacancy complex (V-Pt-V).
Resumo:
Syntheses and structural characterization of Ni(II) chelates of a new series of symmetric and unsymmetric tetradentate linear ligands are described. Preparative routes involve either the direct reaction between a metal complex and arene diazonium diazonium salts or a simple metal incorporation into the independently synthesized ligands. Recent X-ray structure determination of 4,9-dimethyl-5,8-diazadodeca-4,8-diene-2,11-dione-3,10-di(4′-methyl phenyl) hydrazonatonickel(II) complex reveals the geometry around the Ni(II) to be very close to square planar. The expected distortion because of the disposition of bulky aromatic groups on the neighbouring nitrogens is minimized by their projection in the opposite directions from the plane. PMP, IR and electronic spectral data for the complexes are quite in agreement with this structure.
Resumo:
This paper reports the observation of a reversible disassembly process for a previously reported octanuclear Cu(II) complex with imidazole. To identify the factors responsible for the process, five Cu(II) complexes of different nuclearity with different amino acid-derived tetradentate ligands were structurally characterized. The results show that the coordination geometry preference of Cu(II), the tendency of imidazole to act as in-plane ligand, and H-bonding played important role in the formation and disassembly of the octanuclear complex. A general scheme describing the effect of different amino acid side arms, solvents, and exogenous ligands on the nuclearity of the Cu(II) complexes has been presented. The crystals of the complexes also showed formation of multifaceted networks in the resulting complexes.
Resumo:
The reaction of imidazole (Him) with [Cu2(µ-O2CMe)4(H2O)2] in water–NaClO4 led to the formation of a polynuclear copper(II) complex, [Cu5(OH)2(H2O)(O2CMe)6(Him)4][ClO4]21, in which the pentanuclear units, showing four, five and six co-ordination geometries for the copper(II) centres and Cu Cu distances of 3.043(1), 3.178(1) and 3.578(1)Å, were linked by aqua bridges to give an intra-chain inter-unit Cu Cu separation of 4.507(1)Å.
Resumo:
The reaction of [Cu2(O2CMe)4(H2O)2] with N, N, N′, N′-tetramethylethane- 1,2-diamine (tmen) in ethanol yielded the dicopper(II) complex [Cu2(OH)(O2CMe)(tmen)2][ClO4]21. A similar reaction with N, N- dimethylethane- 1,2-diamine (dmen) afforded a crystalline product 2 in which two dicopper(II) complexes, [Cu2(OH)(O2CMe)(dmen)2][ClO4]22a and [Cu2(OH)(O2CMe)(H2O)2(dmen)2][ClO4]22b, are cocrystallized in a 1 : 1 molar ratio along with 2NaClO4. The crystal structures of 1 and 2 have been determined. The complexes have an asymmetrically dibridged [Cu2(µ-OH)(µ-O2CMe)]2+ core. The co-ordination geometry of the metal is square planar (CuO2N2). The copper atoms in 2b have a square-pyramidal CuO3N2 co-ordination sphere. The Cu Cu distances and Cu–O–Cu angles in 1, 2a and 2b are 3.339(2), 3.368(3), 3.395(7)Å, 120.1(2), 116.4(1) and 123.6(2)°, respectively. Complex 1 exhibits an axial ESR spectrum in a methanol glass giving g∥= 2.26 (A∥= 164 × 10–4 cm–1) and g⊥= 2.04. The ESR spectra obtained from the bulk material of the dmen product are indicative of the presence of two dimers, viz. complex 2a(g∥= 2.25, A∥= 165 × 10–4 cm–1; g⊥= 2.03) and 2b(g∥= 2.19, A∥= 184 × 10–4 cm–1; g⊥= 2.0). Variable-temperature magnetic susceptibility measurements on these complexes show an intramolecular antiferromagnetic coupling in the dimeric core. The fitting parameters are J=–27.8 cm–1, g= 2.1 for complex 1 and J=–10.1 cm–1, g= 2.0 for 2. The magnetostructural properties of the complexes are discussed. There is a linear correlation of the –2J values with the Cu Cu distances among dibridged complexes having square-planar copper(II) centres.
Resumo:
A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.
Resumo:
A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.
Resumo:
The synthesis, X-ray crystal structure, and magnetic properties of an angular trinuclear copper(II) complex [Cu3(O2CMC)4(bpy)3(H2O)](PF6)2 (1), obtained from a reaction of Cu2(O2CMe)4(H2O)2 With 2,2'-bipyridine (bpy) and NH4PF6 in ethanol, are reported. Complex 1 crystallizes in triclinic space group P1BAR with a = 11.529(1) angstrom, b = 12.121(2) angstrom, c = 17.153(2) angstrom, alpha = 82.01(1)-degrees, beta = 79.42(1)-degrees, gamma = 89.62(1)-degrees, and Z = 2. A total of 6928 data with I > 2.5sigma(I) were refined to R = 0.0441 and R(w) = 0.0557. The structure consists of a trinuclear core bridged by four acetate ligands showing different bonding modes. The coordination geometry at each copper is distorted square-pyramidal with a CuN2O2...O chromophore. The Cu...Cu distances are 3.198(1) angstrom, 4.568(1) angstrom, and 6.277(1) angstrom. There are two monoatomic acetate bridges showing Cu-O-Cu angles of 93.1(1) and 97.5(1)-degrees. Magnetic studies in the temperature range 39-297 K show the presence of a strong ferromagnetically coupled dicopper(II) unit (2J = +158 cm-1) and an essentially isolated copper(II) center (2J' = -0.4 cm-1) in 1. The EPR spectra display an axial spectrum giving g(parallel-to) = 2.28 (A(parallel-to) = 160 X 10(-4) cm-1) and g(perpendicular-to) = 2.06 (A(perpendicular-to) = 12 X 10(-4) cm-1) for the normal copper and two intense isotropic signals with g values 2.70 and 1.74 for the strongly coupled copper pair. The structural features of 1 compare well with the first generation models for ascorbate oxidase.
Resumo:
The coordinating behavior of a new dihydrazone ligand, 2,6-bis(3-methoxysalicylidene) hydrazinocarbonyl]pyridine towards manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) has been described. The metal complexes were characterized by magnetic moments, conductivity measurements, spectral (IR, NMR, UV-Vis, FAB-Mass and EPR) and thermal studies. The ligand crystallizes in triclinic system, space group P-1, with alpha=98.491(10)degrees, beta=110.820(10)degrees and gamma=92.228(10)degrees. The cell dimensions are a=10.196(7)angstrom, b=10.814(7)angstrom, c=10.017(7)angstrom, Z=2 and V=1117.4(12). IR spectral studies reveal the nonadentate behavior of the ligand. All the complexes are neutral in nature and possess six-coordinate geometry around each metal center. The X-band EPR spectra of copper(II) complex at both room temperature and liquid nitrogen temperature showed unresolved broad signals with g(iso) = 2.106. Cyclic voltametric studies of copper(II) complex at different scan rates reveal that all the reaction occurring are irreversible. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the synthesis, characterization and studies of dendrimers possessing an amino acid-metal complex as the core. Using Frechet-type polyaryl ether dendrons, L-tyrosine-metal (Zn-II and Co-II) complex cored dendrimers of 0-4 generations were synthesized. The metal complexation of the tyrosine unit at the focal point of these dendrons took place smoothly, in excellent yields, even though the sizes of the dendrons increase as the generations advance. Spectrophotometric titrations with CoII metal ion confirmed the formation of a 2 : 1 dendritic ligand to metal complex and the existence of a pseudotetrahedral geometry at the metal centre is also inferred. Cyclic voltammetric studies of dendrimer-Co-II complexes showed that while the electron transfer of Co-II to Co-I was facile for generations 0-2, such a process was difficult with generations 3 and 4, indicating a rigid encapsulation of the metal ion centre by proximal dendron groups. Further reduction of Co-I to Co-0 and the corresponding oxidation processes appear to be limited by adsorption at the surfaces of the electrodes.
Resumo:
The mononuclear Cu(II) complex [Cu(phen)(H2O)(NO3)(2)] (1), obtained by the reaction of 1,10-phenanthroline with Cu(NO3)(2)center dot 3H(2)O in methanol solution, reacts with anionic ligands SCN-, AcO-, N-3(-) and PhCO2- in MeOH solution to form the stable binuclear complexes [Cu-2(H2O)(2)(phen)(2)(mu-X)(2)](2) (NO3)(2), where X = SCN- (2), AcO- (3), N-3(-) (4) or PhCO2- (5). The molecular structure of complex 3 was determined by single-crystal X-ray diffraction studies. These complexes were characterized by electronic, IR, ESR, magnetic moments and conductivity measurements. The electrochemical behaviour of the complexes was investigated by cyclic voltammetry. The interactions of these complexes with calf thymus DNA have been investigated using absorption spectrophotometry. Their DNA cleavage activity was studied on double-stranded pBR322 plasmid DNA using gel electrophoresis experiments in the absence and presence of H2O2 as oxidant.
Resumo:
The mononuclear Cu(II) complex [Cu(phen)(H2O)(NO3)(2)] (1), obtained by the reaction of 1,10-phenanthroline with Cu(NO3)(2)center dot 3H(2)O in methanol solution, reacts with anionic ligands SCN-, AcO-, N-3(-) and PhCO2- in MeOH solution to form the stable binuclear complexes [Cu-2(H2O)(2)(phen)(2)(mu-X)(2)](2) (NO3)(2), where X = SCN- (2), AcO- (3), N-3(-) (4) or PhCO2- (5). The molecular structure of complex 3 was determined by single-crystal X-ray diffraction studies. These complexes were characterized by electronic, IR, ESR, magnetic moments and conductivity measurements. The electrochemical behaviour of the complexes was investigated by cyclic voltammetry. The interactions of these complexes with calf thymus DNA have been investigated using absorption spectrophotometry. Their DNA cleavage activity was studied on double-stranded pBR322 plasmid DNA using gel electrophoresis experiments in the absence and presence of H2O2 as oxidant.
Resumo:
The transition metal complexes of salicylhydrazone of anthranilhydrazide (H2L) were synthesised. The structures of metal complexes were characterized by various spectroscopic [IR, NMR, UV-Vis, EPR], thermal and other physicochemical methods. The single-crystal X-ray diffraction study of [Cu(HL)Cl]center dot H2O reveal its orthorhombic system with space group P2(1)2(1)2 and Z=4. The copper center has a distorted square planar geometry with ONO and Cl as the donor atoms. The ligand and its metal chelates have been screened for their antimicrobial and anti-tubercular activities using serial dilution method. Metal complexes in general have exhibited better antibacterial and antifungal activity than the free ligand and in few cases better than the standard used. Among the bacterial strains used, the complexes are highly potent against Gram-positive strains compared to Gram-negative. Anti-tubercular activity exhibited by the Co(II) complex is comparable with the standard used. (C) 2011 Elsevier B. V. All rights reserved.