45 resultados para Platform of contact


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a simple second-order, curvature based mobility analysis of planar curves in contact. The underlying theory deals with penetration and separation of curves with multiple contacts, based on relative configuration of osculating circles at points of contact for a second-order rotation about each point of the plane. Geometric and analytical treatment of mobility analysis is presented for generic as well as special contact geometries. For objects with a single contact, partitioning of the plane into four types of mobility regions has been shown. Using point based composition operations based on dual-number matrices, analysis has been extended to computationally handle multiple contacts scenario. A novel color coded directed line has been proposed to capture the contact scenario. Multiple contacts mobility is obtained through intersection of the mobility half-spaces. It is derived that mobility region comprises a pair of unbounded or a single bounded convex polygon. The theory has been used for analysis and synthesis of form closure configurations, revolute and prismatic kinematic pairs. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pure rotational spectra of the propargyl alcohol dimer and its three deuterium isotopologues have been observed in the 4 to 13 GHz range using a pulsed-nozzle Fourier transform microwave spectrometer. For the parent dimer, a total of 51 transitions could be observed and fitted within experimental uncertainty. For two mono-substituted and one bi-substituted deuterium isotopologues, a total of 14, 17, and 19 transitions were observed, respectively. The observed rotational constants for the parent dimer A = 2321.8335(4) MHz, B = 1150.4774(2) MHz, and C = 1124.8898(2) MHz] are close to those of the most stable structure predicted by ab initio calculations. Spectra of the three deuterated isotopologues and Kraitchman analysis positively confirm this structure. Geometrical parameters and ``Atoms in Molecules'' analysis on the observed structure reveal that the two propargyl alcohol units in the dimer are bound by three different types of hydrogen bonds: O-H center dot center dot center dot O, O-H center dot center dot center dot pi, and C-H center dot center dot center dot pi. To the best of our knowledge, propargyl alcohol seems to be the smallest molecule forming a homodimer with three different points of contact. (C) 2014 AIP Publishing LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowing the nature of the enzyme-graphene interface is critical for a design of graphene-based biosensors. Extensive contacts between graphene and enzyme could be obtained by employing a suitable encapsulation which does not impede its enzymatic reaction. We have performed molecular dynamics simulations to obtain an insight on many forms of contact between glucose oxidase dimer and the single-layer graphene nano-sheets. The unconnected graphene sheets tended to form a flat stack regardless of their initial positions around the enzyme, whereas the same graphene sheets linked together formed a flower-like shape engendering different forms of wrapping of the enzyme. During the encapsulation no core hydrophobic residues of the enzyme were exposed. Since the polar and charged amino acids populated the enzyme's surface we also estimated, using DFT calculations, the interaction energies of individual polar and charged amino acid residues with graphene. It was found that the negatively charged residues can bind to graphene unexpectedly strongly; however, the main effect of encapsulation comes from the overlap of adjacent edges of graphene sheets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a practical situation, it is difficult to model exact contact conditions clue to challenges involved in the estimation of contact forces, and relative displacements between the contacting bodies. Sliding and seizure conditions were simulated on first-of-a-kind displacement controlled system. Self-mated stainless steels have been investigated in detail. Categorization of contact conditions prevailing at the contact interface has been carried out based on the variation of coefficient of friction with number of cycles, and three-dimensional fretting loops. Surface and subsurface micro-cracks have been observed, and their characteristic shows strong dependence on loading conditions. Existence of shear bands in the subsurface region has been observed for high strain and low strain rate loading conditions. Studies also include the influence of initial surface roughness on the damage under two extreme contact conditions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new method for the separation of contact resistance (R-contact) into Schottky barrier resistance (R-SB) and interlayer resistance (R-IL) is proposed for multilayered MoS2 FETs. While R-SB varies exponentially with Schottky barrier height (Phi(bn)), R-IL essentially remains unchanged. An empirical model utilizing this dependence of R-contact versus Phi(bn) is proposed and fits to the experimental data. The results, on comparison with the existing reports of lowest R-contact, suggest that the extracted R-IL (1.53 k Omega.mu m) for an unaltered channel would determine the lower limit of intrinsic R-contact even for barrierless contacts for multilayered exfoliated MoS2 FETs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamics of contact free (levitated) drying of nanofluid droplets is ubiquitous in many application domains ranging from spray drying to pharmaceutics. Controlling the final morphology (macro to micro scales) of the dried out sample poses some serious challenges. Evaporation of solvent and agglomeration of particles leads to porous shell formation in acoustically levitated nanosilica droplets. The capillary pressure due to evaporation across the menisci at the nanoscale pores causes buckling of the shell which leads to ring and bowl shaped final structures. Acoustics plays a crucial role in flattening of droplets which is a prerequisite for initiation of buckling in the shell: Introduction of mixed nanocolloids (sodium dodecyl sulfate + nanosilica) reduces evaporation rate, disrupts formation of porous shell, and enhances mechanical strength of the shell, all of which restricts the process of buckling. Although buckling is completely arrested in such surfactant added droplets, controlled external heating using laser enhances evaporation through the pores in the shell due to thermally induced structural changes and rearrangement of SDS aggregates which reinitializes buckling in such droplets, Furthermore, inclusion of anilinium hydrochloride into the nanoparticle laden droplets produces ions which adsorb and modify the morphology of sodium dodecyl sulfate crystals and reinitializes buckling in the shell (irrespective of external heating conditions). The kinetics of buckling is determined by the combined effect of morphology of the colloidal particles, particle/aggregate diffusion rate within the droplet, and the rate of evaporation of water. The buckling dynamics leads to cavity formation which grows subsequently to yield final structures with drastically different morphological features. The cavity growth is controlled by evaporation through the nanoscate pores and exhibits a universal trend irrespective of heating rate and nanoparticle type.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS2 with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS2 supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the pure supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS2. (C) 2016 AIP Publishing LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of contact architecture, graphene defect density and metal-semiconductor work function difference on the resistivity of metal-graphene contacts have been investigated. An architecture with metal on the bottom of graphene is found to yield resistivities that are lower, by a factor of four, and most consistent as compared to metal on top of graphene. Growth defects in graphene film were found to further reduce resistivity by a factor of two. Using a combination of method and metal used, the contact resistivity of graphene has been decreased by a factor of 10 to 1200. +/-. 250 Omega mu m using palladium as the contact metal. While the improved consistency is due to the metal being able to contact uncontaminated graphene in the metal on the bottom architecture, lower contact resistivities observed on defective graphene with the same metal are attributed to the increased number of modes of quantum transport in the channel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the prediction of response of footings subjected to horizontal vibration, different types of contact shear distributions and displacement conditions are to be considered. Solutions using elastic half-space theory are not available for all the cases of shear distribution and displacement conditions. In this paper, solutions are obtained for the cases in which solutions are not available and the relevant coefficients are presented in tables which could be used in the appropriate equations for the prediction of dynamic response. Spring constants are evaluated and tabulated for different displacement and shear distribution conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perfectly hard particles are those which experience an infinite repulsive force when they overlap, and no force when they do not overlap. In the hard-particle model, the only static state is the isostatic state where the forces between particles are statically determinate. In the flowing state, the interactions between particles are instantaneous because the time of contact approaches zero in the limit of infinite particle stiffness. Here, we discuss the development of a hard particle model for a realistic granular flow down an inclined plane, and examine its utility for predicting the salient features both qualitatively and quantitatively. We first discuss Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.58 are in the rapid flow regime, due to the very high particle stiffness. An important length scale in the shear flow of inelastic particles is the `conduction length' delta = (d/(1 - e(2))(1/2)), where d is the particle diameter and e is the coefficient of restitution. When the macroscopic scale h (height of the flowing layer) is larger than the conduction length, the rates of shear production and inelastic dissipation are nearly equal in the bulk of the flow, while the rate of conduction of energy is O((delta/h)(2)) smaller than the rate of dissipation of energy. Energy conduction is important in boundary layers of thickness delta at the top and bottom. The flow in the boundary layer at the top and bottom is examined using asymptotic analysis. We derive an exact relationship showing that the a boundary layer solution exists only if the volume fraction in the bulk decreases as the angle of inclination is increased. In the opposite case, where the volume fraction increases as the angle of inclination is increased, there is no boundary layer solution. The boundary layer theory also provides us with a way of understanding the cessation of flow when at a given angle of inclination when the height of the layer is decreased below a value h(stop), which is a function of the angle of inclination. There is dissipation of energy due to particle collisions in the flow as well as due to particle collisions with the base, and the fraction of energy dissipation in the base increases as the thickness decreases. When the shear production in the flow cannot compensate for the additional energy drawn out of the flow due to the wall collisions, the temperature decreases to zero and the flow stops. Scaling relations can be derived for h(stop) as a function of angle of inclination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A two-dimensional model is proposed for taking into account the establishment of contact on the compression side of crack faces in plates under bending. An approximate but simple method is developed for evaluating reduction of stress intensity factor due to such ‘crack closure’. Analysis is first carried out permitting interference of the crack faces. Contact forces are then introduced on the crack faces and their magnitudes determined from the consideration that the interference is just eliminated. The method is based partly on finite element analysis and partly on a continuum analysis using Irwin's solution for point loads on the crack line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas-phase controlled absorption of ammonia in foams made of solutions of sulphuric acid has been studied experimentally. Effects of gas-phase concentration of ammonia and type of surfactant on the performance of the foam-bed reactor are investigated. Gas-phase controlled absorption from a spherical bubble is anaylzed using the asymptotic value of Sherwood number (Sh = 6.58), for both negligible as well as significant changes in the volume of the bubble. The experimental data are shown to be in good agreement with the single-stage model of the foam-bed reactor using these asymptotic sub-models, as well as the diffusion-in-sphere analysis available in literature. Influence of effective diffusivity on the time dependence of fractional gas absorption has been found to be unimportant for foam columns with large times of contact. The asymptotic sub-models have been compared and use of the rigid-sphere asymptotic sub-model is recommended for foam columns of practical relevence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let be a smooth real surface in and let be a point at which the tangent plane is a complex line. How does one determine whether or not is locally polynomially convex at such a p-i.e. at a CR singularity? Even when the order of contact of with at p equals 2, no clean characterisation exists; difficulties are posed by parabolic points. Hence, we study non-parabolic CR singularities. We show that the presence or absence of Bishop discs around certain non-parabolic CR singularities is completely determined by a Maslov-type index. This result subsumes all known facts about Bishop discs around order-two, non-parabolic CR singularities. Sufficient conditions for Bishop discs have earlier been investigated at CR singularities having high order of contact with . These results relied upon a subharmonicity condition, which fails in many simple cases. Hence, we look beyond potential theory and refine certain ideas going back to Bishop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Levi geometry at weakly pseudoconvex boundary points of domains in C-n, n >= 3, is sufficiently complicated that there are no universal model domains with which to compare a general domain. Good models may be constructed by bumping outward a pseudoconvex, finite- type Omega subset of C-3 in such a way that: (i) pseudoconvexity is preserved, (ii) the (locally) larger domain has a simpler defining function, and (iii) the lowest possible orders of contact of the bumped domain with partial derivative Omega, at the site of the bumping, are realized. When Omega subset of C-n, n >= 3, it is, in general, hard to meet the last two requirements. Such well-controlled bumping is possible when Omega is h-extendible/semiregular. We examine a family of domains in C-3 that is strictly larger than the family of h-extendible/semiregular domains and construct explicit models for these domains by bumping.