43 resultados para Pictorial forms
Resumo:
In the present study, four new multicomponent forms of lamotrigine (LTG) with selected carboxylic acids, viz. acetic acid, propionic acid, sorbic acid, and glutaric acid, have been identified. Preliminary solid-state characterization was done by differential scanning calorimetry/thermogravimetric, infrared, and powder X-ray diffraction techniques. X-ray single-crystal structure analysis confirmed the proton transfer, stoichiometry, and the molecular composition, revealing all of these to be a new salt/salt-cocrystal/salt monosolvate monohydrate of LTG. All four compounds exhibited both the aminopyridine dimer of LTG (motif 4) and cation-anion dimers between protonated LTG and the carboxylate anion in their crystal structures. Further, these new crystal forms were subjected to solubility studies in water, powder dissolution studies in 0.1 N HCl, and stability studies under humid conditions in comparison with pure LTG base. The solubility of these compounds in water is significantly enhanced compared with that of pure base, which is attributed to the type of packing motifs present in their crystal structures as well as to the lowering of the pH by the acidic coformers. Solid residues of all forms remaining after solubility and dissolution experiments were also assessed for any transformation in water and acidic medium.
Resumo:
Thirteen new solid forms of etravirine were realized in the process of polymorph and cocrystal/salt screening to improve the solubility of this anti-HIV drug. One anhydrous form, five salts (hydrochloride, mesylate, sulfate, besylate, and tosylate), two cocrystals (with adipic acid and 1,3,5-benzenetricarboxylic acid), and five solvates (formic acid, acetic acid, acetonitrile, and 2:1 and 1:1 methanolates) were obtained. The conformational flexibility of etravirine suggests that it can adopt four different conformations, and among these, two are sterically favorable. However, in all 13 solid forms, the active pharmaceutical ingredient (API) was found to adopt just one conformation. Due to the poor aqueous solubility of the API, the solubilities of the salts and cocrystals were measured in a 50% ethanol water mixture at neutral pH. Compared to the salts, the cocrystals were found to be stable and showed an improvement in solubility with time. All the salts were dissociated within an hour, except the tosylate, which showed 50% phase transformation after 1 h of the slurry experiment. A structure property relationship was examined to analyze the solubility behavior of the solid forms.
Resumo:
The miniaturization of electronic and ionic devices with thermionic cathodes and thc improvement of their vacuum properties are questions of very great interest to the electronic engineer. However there have bcen no proposals so far to analyse the problem of miniaturization of such devices In a fundamental way. The present work suggests a choice of the geometrical shape of the cathode, the anode and the envelope of the device, that may help towards such a fundamcnlal approach.It is shown that a design, in which the cathode and the envelope of the tube are made of thm prismatic shape and the anode coincides with the cnvclope, offers a slriknrg advantage over the conventional cylindrical design, in respect of over-all size. The use of the prismatic shape will lead to considerable economy in msterials and may facilitate simpler prodoct~ont echn~ques. I n respect of the miin criteria of vacuum, namely the grade of vacuum, the internal volume occupied by residual gases, the evolution of gases in the internal space and the diffusion of gases from outside into the devicc, it is shown that the prismatic form is at least as good as, if not somewhat superior lo, the cylindrical form.In the actual construction of thin prismatic tubes, manv practical problems will arise, the most important being the mechanical strength and stablity of the structure. But the changeover from the conventional cylindrical to the new prirmaiic form, with its basic advantages, is a development that merits close attention.
Resumo:
Shear induced crystallization in PVDF/PMMA blends, especially at higher fractions of PMMA, can be quite interesting in understanding the structure-property correlation and processing of these blends. In a recent submission (Phys. Chem. Chem. Phys., 2014, 16, 2693-2704), we clearly demonstrated, using dielectric spectroscopy, that the origin of segmental relaxations concerning the crystalline segments of PVDF in PVDF/PMMA blends in the presence of MWNTs (multiwalled nanotubes) was strongly contingent on the size of the crystallite. We now understand that the fraction of PMMA in the blends governs the origin of polymorphism in PVDF. This motivated us to systematically study the effect of shear on the crystallization behavior of PVDF especially in blends with different polymorphic forms of PVDF. Two model blends were selected; one with a mixture of alpha and beta crystals and the other predominantly rich in alpha crystals. Initially, physical ageing, at different oscillation frequencies (1 rad s(-1) and 0.1 rad s(-1)), was monitored by melt rheology and subsequently, the effect of steady shear was probed in situ without changing the history of the samples. Intriguingly, the rate of crystallization was observed to be significantly higher for higher oscillation frequencies, which essentially suggest that shear has induced crystallization in the blends. More interestingly, the effect of steady shear was more pronounced in the blends rich in alpha crystals (bigger crystallites as observed from SAXS) and at lower oscillation frequencies.
Resumo:
Sign changes of Fourier coefficients of various modular forms have been studied. In this paper, we analyze some sign change properties of Fourier coefficients of Hilbert modular forms, under the assumption that all the coefficients are real. The quantitative results on the number of sign changes in short intervals are also discussed. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We report the preparation, analysis, and phase transformation behavior of polymorphs and the hydrate of 4-amino-3,5-dinitrobenzamide. The compound crystallizes in four different polymorphic forms, Form I (monoclinic, P2(1)/n), Form II (orthorhombic, Pbca), Form III (monoclinic, P2(1)/c), and Form IV (monoclinic, P2(1)/c). Interestingly, a hydrate (triclinic, P (1) over bar) of the compound is also discovered during the systematic identification of the polymorphs. Analysis of the polymorphs has been investigated using hot stage microscopy, differential scanning calorimetry, in situ variable-temperature powder X-ray diffraction, and single-crystal X-ray diffraction. On heating, all of the solid forms convert into Form I irreversibly, and on further heating, melting is observed. In situ single-crystal X-ray diffraction studies revealed that Form II transforms to Form I above 175 degrees C via single-crystal-to-single-crystal transformation. The hydrate, on heating, undergoes a double phase transition, first to Form III upon losing water in a single-crystal-to-single-crystal fashion and then to a more stable polymorph Form I on further heating. Thermal analysis leads to the conclusion that Form II appears to be the most stable phase at ambient conditions, whereas Form I is more stable at higher temperature.
Resumo:
We affirmatively answer a question due to S. Bocherer concerning the feasibility of removing one differential operator from the standard collection of m + 1 of them used to embed the space of Jacobi forms of weight 2 and index m into several pieces of elliptic modular forms. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Rv1625c is one of 16 adenylyl cyclases encoded in the genome of Mycobacterium tuberculosis. In solution Rv1625c exists predominantly as a monomer, with a small amount of dimer. It has been shown previously that the monomer is active and the dimeric fraction is inactive. Both fractions of wild-type Rv1625c crystallized as head-to-head inactive domain-swapped dimers as opposed to the head-to-tail dimer seen in other functional adenylyl cyclases. About half of the molecule is involved in extensive domain swapping. The strain created by a serine residue located on a hinge loop and the crystallization condition might have led to this unusual domain swapping. The inactivity of the dimeric form of Rv1625c could be explained by the absence of the required catalytic site in the swapped dimer. A single mutant of the enzyme was also generated by changing a phenylalanine predicted to occur at the functional dimer interface to an arginine. This single mutant exists as a dimer in solution but crystallized as a monomer. Analysis of the structure showed that a salt bridge formed between a glutamate residue in the N-terminal segment and the mutated arginine residue hinders dimer formation by pulling the N-terminal region towards the dimer interface. Both structures reported here show a change in the dimerization-arm region which is involved in formation of the functional dimer. It is concluded that the dimerization arm along with other structural elements such as the N-terminal region and certain loops are vital for determining the oligomeric nature of the enzyme, which in turn dictates its activity.
Resumo:
We prove a nonvanishing result for Koecher-Maass series attached to Siegel cusp forms of weight k and degree n in certain strips on the complex plane. When n = 2, we prove such a result for forms orthogonal to the space of the Saito-Kurokawa lifts `up to finitely many exceptions', in bounded regions. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
We prove a sub-convex estimate for the sup-norm of L-2-normalized holomorphic modular forms of weight k on the upper half plane, with respect to the unit group of a quaternion division algebra over Q. More precisely we show that when the L-2 norm of an eigenfunction f is one, parallel to f parallel to(infinity) <<(epsilon) k(1/2-1/33+epsilon) for any epsilon > 0 and for all k sufficiently large.
Resumo:
In this paper, we present a survey of the recent results on the characterization of the cuspidality of classical modular forms on various groups by a suitable growth of their Fourier coefficients.
Resumo:
It is shown that there are infinitely many primitive cusp forms f of weight 2 with the property that for all X large enough, every interval (X, X + cX(1/4)), where c > 0 depends only on the form, contains an integer n such that the n-th Fourier coefficient of f is nonzero.