87 resultados para Photoreceptor Connecting Cilium
Resumo:
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Backbone conformations at 1064 asparaginyl residues in 123 non-homologous, high-resolution X-ray structures of proteins were analysed. Asn adopts conformations in left-handed x-helical region and other partially allowed regions in the Ramachandran map more readily than any other non-glycyl residue. Asn conformational clusters in the (phi,psi) regions of left-handed alpha-helix, right-handed alpha-helix and extended (beta) strands were investigated in detail for their occurrence in various secondary structures, especially in beta-turn regions. Preferences were observed for Asn conformations in different positions in various beta-turn types, including the first and fourth positions of the turn. Asparaginyl residues with extended conformations are found to occur frequently in irregular regions, although they are expected to occur predominantly in extended strands or in the third position of type II beta-turns. Asn conformations at the N-cap positions of helices strongly prefer extended conformation than alpha(L), which seems to be characteristic of non-glycyl residues at that position. In the linkers connecting two extended strands and those connecting an alpha-helix and an extended strand, Asn with alpha(L) or alpha(R) conformation is more favoured than Asn with the beta-conformation. Analysis of Asn-Asn doublets and Asn-X-Asn triplets permitted identification of conformational families in such sequences. Results of this investigation provide useful hints in modelling Asn-rich regions in proteins such as malaria parasite coat protein. (C) Munksgaard 1994.
Resumo:
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We report new radio continuum and 21 cm HI observations using the Giant Metrewave Radio Telescope (GMRT) of the group Holmberg 124 ( Ho 124) comprising four late-type galaxies, namely NGC 2820, Mrk 108, NGC 2814 and NGC 2805. The three galaxies, NGC 2820, Mrk 108 and NGC 2814 which are closely located in the sky plane have clearly undergone tidal interactions as seen from the various morphological tidal signatures and debris. Moreover we note various features in the group members which we believe might be due to ram pressure. In this paper, we describe four interesting results emerging from our observations: a) detection of the tidal radio continuum bridge at 330 MHz connecting the galaxies NGC 2820+ Mrk 108 with NGC 2814. The radio bridge was discovered at 1465 MHz by van der Hulst & Hummel ( 1985, A& A, 150, 17). We find that the bridge has a fairly steep spectrum with a spectral index alpha(S proportional to nu(alpha)) of - 1.8(-0.2)(+0.3) which is much steeper than the - 0.8 quoted by van der Hulst & Hummel ( 1985); b) detection of other tidal features like the tilted HI and radio continuum disk of NGC 2814, a HI streamer and a radio continuum tail arising from the south of NGC 2814. We also report the detection of a possible tidal dwarf galaxy in HI; c) sharp truncation in the HI distribution in the south of NGC 2820 and in the HI and radio continuum distribution in the north of NGC 2814. The optical disks in both the cases look undisturbed. As pointed out by Davis et al. ( 1997, AJ, 114, 613), ram pressure affects different components of the interstellar medium to varying degrees. Simple estimates of pressure in different components of the interstellar medium ( radio continuum, Ha and HI) in NGC 2820 indicate that ram pressure will significantly influence HI; d) detection of a large one-sided HI loop to the north of NGC 2820. No radio continuum emission or Ha emission is associated with the HI loop. We discuss various scenarios for the origin of this loop including a central starburst, ram pressure stripping and tidal interaction. We do not support the central starburst scenario since the loop is not detected in ionized gas. Using the upper limit on X-ray luminosity of Ho 124 (Mulchaey et al. 2003, ApJS, 145, 39), we estimate an upper limit on the intragroup medium (IGrM) density of 8.8 x 10(-4) cm(-3). For half this electron density, we estimate the ram pressure force of the IGrM to be comparable to the gravitational pull of the disk of NGC 2820. Since tidal interaction has obviously influenced the group, we suggest that the loop could have formed by ram pressure stripping if tidal effects had reduced the surface density of HI in NGC 2820. From the complex observational picture of Ho 124 and the numerical estimates, we suggest that the evolution of the Ho 124 group may be governed by both tidal forces due to the interaction and the ram pressure due to motion of the member galaxies in the IGrM and that the IGrM densities should not be too low (i.e. >= 4 x 10(-4)). However this needs to be verified by further observations.
Resumo:
Statistical learning algorithms provide a viable framework for geotechnical engineering modeling. This paper describes two statistical learning algorithms applied for site characterization modeling based on standard penetration test (SPT) data. More than 2700 field SPT values (N) have been collected from 766 boreholes spread over an area of 220 sqkm area in Bangalore. To get N corrected value (N,), N values have been corrected (Ne) for different parameters such as overburden stress, size of borehole, type of sampler, length of connecting rod, etc. In three-dimensional site characterization model, the function N-c=N-c (X, Y, Z), where X, Y and Z are the coordinates of a point corresponding to N, value, is to be approximated in which N, value at any half-space point in Bangalore can be determined. The first algorithm uses least-square support vector machine (LSSVM), which is related to aridge regression type of support vector machine. The second algorithm uses relevance vector machine (RVM), which combines the strengths of kernel-based methods and Bayesian theory to establish the relationships between a set of input vectors and a desired output. The paper also presents the comparative study between the developed LSSVM and RVM model for site characterization. Copyright (C) 2009 John Wiley & Sons,Ltd.
Resumo:
In this work a single edge notched plate (SEN(T)) subjected to a tensile stress pulse is analysed, using a 2D plane strain dynamic finite element procedure. The interaction of the notch with a pre-nucleated hole ahead of it is examined. The background material is modelled by the Gurson constitutive law and ductile failure by microvoid coalescence in the ligament connecting the notch and the hole is simulated. Both rate independent and rate dependent material behaviour is considered. The notch tip region is subjected to a range of loading rates j by varying the peak value and the rise time of the applied stress pulse. The results obtained from these simulations are compared with a three point bend (TPB) specimen subjected to impact loading analysed in an earlier work [3] The variation of J at fracture initiation, J(c), with average loading rate j is obtained from the finite element simulations. It is found that the functional relationship between J(c) and j is fairly independent of the specimen geometry and is only dependent on material behaviour.
Resumo:
A three-terminal capacitance bridge is developed for the measurement of the dielectric constant of lossy liquids. Using this modified ratio transformer bridge, the capacitance shunted by a resistance as low as 50 Omega is measured at 10 kHz. The capacitance error associated with the inductance of the connecting wire is compensated using the novel method of introducing an additional transformer to the existing ratio transformer bridge. Other sources of capacitance errors, such as the non-zero output impedence of the ratio transformer and the shield capacitances of the cables, are discussed.
Resumo:
In the title Mannich base, C20H21N3O3, an isatin derivative of thymol the O-CH2-C(=O)-N(H)-N fragment connecting the aromatic and fused-ring systems is approximately planar, with the N-N single bond in a Zmconfiguration. The amino H atom of this N-N fragment is intramolecularly hydrogen bonded to the carbonyl O atom of the indolinone fused ring as well as to the phenoxy O atom of the aromat ring. The amino H atom of the indoline fused ring forms a hydrogen bond with the double-bond O atom of an adjacent molecule, this hydrogen bond giving rise to a linear chain motif.
Resumo:
This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed Using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interlace. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable Of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely Using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. I-lie capability of the model to capture the critical crack regions, loads and deflections for various types Of shear failures ill prestressed concrete beam has been illustrated.
Resumo:
A decade ago, Budakian and Putterman [Phys. Rev. Lett. 85, 1000 (2000)] ascribed friction to the formation of bonds arising from contact charging when a gold tip of a surface force apparatus was dragged on polymethylmethacrylate surface. We propose a stick-slip model that captures the observed correlation between stick-slip events and charge transfer, and the lack of dependence of the scale factor connecting the force jumps and charge transfer on normal load. Here, stick-slip dynamics arises as a competition between the viscoelastic and plastic deformation time scales and that due to the pull speed with contact charging playing a minor role. Our model provides an alternate basis for explaining most experimental results without ascribing friction to contact charging.
Resumo:
Receive antenna selection (AS) reduces the hardware complexity of multi-antenna receivers by dynamically connecting an instantaneously best antenna element to the available radio frequency (RF) chain. Due to the hardware constraints, the channels at various antenna elements have to be sounded sequentially to obtain estimates that are required for selecting the ``best'' antenna and for coherently demodulating data. Consequently, the channel state information at different antennas is outdated by different amounts. We show that, for this reason, simply selecting the antenna with the highest estimated channel gain is not optimum. Rather, the channel estimates of different antennas should be weighted differently, depending on the training scheme. We derive closed-form expressions for the symbol error probability (SEP) of AS for MPSK and MQAM in time-varying Rayleigh fading channels for arbitrary selection weights, and validate them with simulations. We then derive an explicit formula for the optimal selection weights that minimize the SEP. We find that when selection weights are not used, the SEP need not improve as the number of antenna elements increases, which is in contrast to the ideal channel estimation case. However, the optimal selection weights remedy this situation and significantly improve performance.
Resumo:
In a storage system where individual storage nodes are prone to failure, the redundant storage of data in a distributed manner across multiple nodes is a must to ensure reliability. Reed-Solomon codes possess the reconstruction property under which the stored data can be recovered by connecting to any k of the n nodes in the network across which data is dispersed. This property can be shown to lead to vastly improved network reliability over simple replication schemes. Also of interest in such storage systems is the minimization of the repair bandwidth, i.e., the amount of data needed to be downloaded from the network in order to repair a single failed node. Reed-Solomon codes perform poorly here as they require the entire data to be downloaded. Regenerating codes are a new class of codes which minimize the repair bandwidth while retaining the reconstruction property. This paper provides an overview of regenerating codes including a discussion on the explicit construction of optimum codes.
Resumo:
The seismic slope stability analysis of the right abutment of a railway bridge proposed at about 350 m above the ground level, crossing a river and connecting two huge hillocks in the Himalayas, India, is presented in this paper. The rock slopes are composed of highly jointed rock mass and the joint spacing and orientation are varying at different locations. Seismic slope stability analysis of the slope under consideration is carried out using both pseudo-static approach and time response approach as the site is located in seismic zone V as per the earth quake zonation maps of India. Stability of the slope is studied numerically using program FLAC. The results obtained from the pseudo-static analysis are presented in the form of Factor of Safety (FOS) and the results obtained from the time response analysis of the slope are presented in terms of horizontal and vertical displacements along the slope. The results obtained from both the analyses confirmed the global stability of the slope as the FOS in case of pseudo-static analysis is above 1.0 and the displacements observed in case of time response analysis are within the permissible limits. This paper also presents the results obtained from the parametric analysis performed in the case of time response analysis in order to understand the effect of individual parameters on the overall stability of the slope.
Resumo:
MNDO geometry optimizations were carried out on a series of symmetrically and unsymmetrically coupled strained ring hydrocarbons, R1-R1 and R1–R2 (R1=methyl, cyclopropyl, 1-bicyclo[1.1.0]butyl, 1-bicyclo[1.1.1]pentyl, prismyl, cubyl, 6-tricyclo [3.1.1.03,6]heptyl, and tetrahedryl groups; R2=methyl and cyclopropyl). The remarkable contraction of the C---C bond connecting the strained rings found experimentally in a few cases was reproduced correctly by the calculations. A linear correlation was found between the bond length shortening and the bond angle widening at the corresponding carbon atoms for all the structures considered. The reduction in C---C bond lengths due to various ring systems is additive. The additivity indicates that inter-ring interactions which effect the central bond length are absent and confirms the common electronic origin of bond contraction in these systems, viz. enhanced s-character in the exocyclic bonds of strained rings.
Resumo:
This paper deals with the application of artificial commutation for a normally rated inverter connecting a weak AC system in a multiterminal HVDC (MTDC) system. Artificial commutation is achieved using series capacitors. A modular digital simulation technique is developed to study the dynamic performance of the system. It is shown that by a proper selection of the value of the capacitor it is possible to limit the valve stresses and the DC harmonics to acceptable levels and achieve an improved performance during severe transient conditions. The determination of the value of the series capacitor is based on a parametric study.