149 resultados para Phenomena


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curvature related locking phenomena in the out-of-plane deformation of Timoshenko and Euler-Bernoulli curved beam elements are demonstrated and a novel approach is proposed to circumvent them. Both flexure and Torsion locking phenomena are noticed in Timoshenko beam and torsion locking phenomenon alone in Euler-Bernoulli beam. Two locking-free curved beam finite element models are developed using coupled polynomial displacement field interpolations to eliminate these locking effects. The coupled polynomial interpolation fields are derived independently for Timoshenko and Euler-Bernoulli beam elements using the governing equations. The presented of penalty terms in the couple displacement fields incorporates the flexure-torsion coupling and flexure-shear coupling effects in an approximate manner and produce no spurious constraints in the extreme geometric limits of flexure, torsion and shear stiffness. the proposed couple polynomial finite element models, as special cases, reduce to the conventional Timoshenko beam element and Euler-Bernoulli beam element, respectively. These models are shown to perform consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios and are inherently devoid of flexure, torsion and shear locking phenomena. The efficacy, accuracy and reliability of the proposed models to straight and curved beam applications are demonstrated through numerical examples. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report summarizes the presentations and discussions conducted during the symposium, which was held under the aegis of the International Union of Theoretical and Applied Mechanics during 23-27 January 2012 in Bangalore, India. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many meteorological phenomena occur at different locations simultaneously. These phenomena vary temporally and spatially. It is essential to track these multiple phenomena for accurate weather prediction. Efficient analysis require high-resolution simulations which can be conducted by introducing finer resolution nested simulations, nests at the locations of these phenomena. Simultaneous tracking of these multiple weather phenomena requires simultaneous execution of the nests on different subsets of the maximum number of processors for the main weather simulation. Dynamic variation in the number of these nests require efficient processor reallocation strategies. In this paper, we have developed strategies for efficient partitioning and repartitioning of the nests among the processors. As a case study, we consider an application of tracking multiple organized cloud clusters in tropical weather systems. We first present a parallel data analysis algorithm to detect such clouds. We have developed a tree-based hierarchical diffusion method which reallocates processors for the nests such that the redistribution cost is less. We achieve this by a novel tree reorganization approach. We show that our approach exhibits up to 25% lower redistribution cost and 53% lesser hop-bytes than the processor reallocation strategy that does not consider the existing processor allocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The superconducting state of the cuprates in the presence of a magnetic field has been investigated very actively in the past few years through measurements of electrical and thermal transport, ac conductivity, specific heat, and other quantities. The observed behavior is not well understood; it probes the nature of quasiparticies, vortices, and their interactions in a superconductor with nodes in the pair amplitude. We summarize here experimental results and our attempts to understand the phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transition-metal oxides at the metal-insulator boundary, especially those belonging to the perovskite family, exhibit fascinating phenomena such as insulator-metal transitions controlled by composition, high-temperature superconductivity and giant magnetoresistance (GMR), Interestingly, many of these marginally metallic oxides obey the established criteria for metallicity and have a finite density of states at the Fermi;level. The perovskite manganates exhibiting GMR, on the other hand, are unusual in that they possess very high resistivities in the 'metallic' state and show no significant density of states at the Fermi level, Marginal metallicity in oxide systems is a problem of great complexity and contemporary interest and its understanding is of crucial significance to the diverse phenomena exhibited by these materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The near-critical behavior of the susceptibility deduced from light-scattering measurements in a ternary liquid mixture of 3-methylpyridine, water, and sodium bromide has been determined. The measurements have been performed in the one-phase region near the lower consolute points of samples with different concentrations of sodium bromide. A crossover from Ising asymptotic behavior to mean-field behavior has been observed. As the concentration of sodium bromide increases, the crossover becomes more pronounced, and the crossover temperature shifts closer to the critical temperature. The data are well described by a model that contains two independent crossover parameters. The crossover of the susceptibility critical exponent γ from its Ising value γ=1.24 to the mean-field value γ=1 is sharp and nonmonotonic. We conclude that there exists an additional length scale in the system due to the presence of the electrolyte which competes with the correlation length of the concentration fluctuations. An analogy with crossover phenomena in polymer solutions and a possible connection with multicritical phenomena is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for tunnelling and underground space creation is rapidly growing due to the requirement of civil infrastructure projects and urbanisation. Blasting remains the most inexpensive method of underground excavations in hard rock. Unfortunately, there are no specific safety guidelines available for the blasted tunnels with regards to the threshold limits of vibrations caused by repeated blasting activity in the close proximity. This paper presents the results of a comprehensive study conducted to find out the effect of repeated blast loading on the damage experienced by jointed basaltic rock mass during tunnelling works. Conducting of multiple rounds of blasts for various civil excavations in a railway tunnel imparted repeated loading on rock mass of sidewall and roof of the tunnel. The blast induced damage was assessed by using vibration attenuation equations of charge weight scaling law and measured by borehole extensometers and borehole camera. Ground vibrations of each blasting round were also monitored by triaxial geophones installed near the borehole extensometers. The peak particle velocity (V-max) observations and plastic deformations from borehole extensometers were used to develop a site specific damage model. The study reveals that repeated dynamic loading imparted on the exposed tunnel from subsequent blasts, in the vicinity, resulted in rock mass damage at lesser vibration levels than the critical peak particle velocity (V-cr). It was found that, the repeated blast loading resulted in the near-field damage due to high frequency waves and far-field damage due to low frequency waves. The far field damage, after 45-50 occurrences of blast loading, was up to 55% of the near-field damage in basaltic rock mass. The findings of the study clearly indicate that the phenomena of repeated blasting with respect to number of cycles of loading should be taken into consideration for proper assessment of blast induced damage in underground excavations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Double-diffusive finger convection occurs in many natural processes.The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (R-rho) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (Ra-T) has been systematically varied from 7x10(3) to 7x10(8). Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as Ra-T-1/3. Velocity in the finger varies as Ra(T)1/3/R-rho. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glass transition, whereby liquids transform into amorphous solids at low temperatures, is a subject of intense research despite decades of investigation. Explaining the enormous increase in relaxation times of a liquid upon supercooling is essential for understanding the glass transition. Although many theories, such as the Adam-Gibbs theory, have sought to relate growing relaxation times to length scales associated with spatial correlations in liquid structure or motion of molecules, the role of length scales in glassy dynamics is not well established. Recent studies of spatially correlated rearrangements of molecules leading to structural relaxation, termed ``spatially heterogeneous dynamics,'' provide fresh impetus in this direction. A powerful approach to extract length scales in critical phenomena is finite-size scaling, wherein a system is studied for sizes traversing the length scales of interest. We perform finite-size scaling for a realistic glass-former, using computer simulations, to evaluate the length scale associated with spatially heterogeneous dynamics, which grows as temperature decreases. However, relaxation times that also grow with decreasing temperature do not exhibit standard finite-size scaling with this length. We show that relaxation times are instead determined, for all studied system sizes and temperatures, by configurational entropy, in accordance with the Adam-Gibbs relation, but in disagreement with theoretical expectations based on spin-glass models that configurational entropy is not relevant at temperatures substantially above the critical temperature of mode-coupling theory. Our results provide new insights into the dynamics of glass-forming liquids and pose serious challenges to existing theoretical descriptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear absorption and refraction phenomena in stoichiometric lithium niobate (SLN) pure and co-doped with Zn and Nd, and congruent lithium niobate (CLN) were investigated using Z-scan technique. Femtosecond laser pulses from Ti:Sapphire laser (800 nm, 110 fs pulse width and 1 kHz repetition rate) were utilized for the experiment. The process responsible for nonlinear behavior of the samples was identified to be three photon absorption (3PA). This is in agreement with the band gap energies of the samples obtained from the linear absorption cut off and the slope of the plot of Ln(1 − TOA) vs. Ln(I0) using Sutherland’s theory (s = 2.1, for 3PA). The nonlinear refractive index (n2) of Zn doped samples was found to be lower than that of pure samples. Our experiments show that there exists a correlation between the nonlinear properties and the stoichiometry of the samples. The values of n2 fall into the same range as those obtained for the materials of similar band gap.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleataon growth model of electrochemical phase formation is analysed for the hnear potential sweep input Apart from deducing diagnostic criteria and method~ of estimating model parameters, the predictions of the nucleation growth model are compared and contrasted with those of a sample adsorption model A dastlnCtlOn is made possible between adsorption and phase transition, which seems useful for understanding the nature of ECPF phenomena, especially underpotentlal deposition (UPD).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of valence bands and core levels of solids by photoelectron spectroscopy are described at length. Satellite phenomena in the core level spectra have been discussed in some detail and it has been pointed out that the intensity of satellites appearing next to metal and ligand core levels critically depends on the metal-ligand overlap. Use of photoelectron spectroscopy in investigating metal-insulator transitions and spin-state transitions in solids is examined. It is shown that relative intensities of metal Auger lines in transition metal oxides and other systems provide valuable information on the valence bands. Occurrence of interatomic Auger transitions in competition with intraatomic transitions is discussed. Applications of electron energy loss spectroscopy and other techniques of electron spectroscopy in the study of gas-solid interactions are briefly presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doppler weather radars with fast scanning rates must estimate spectral moments based on a small number of echo samples. This paper concerns the estimation of mean Doppler velocity in a coherent radar using a short complex time series. Specific results are presented based on 16 samples. A wide range of signal-to-noise ratios are considered, and attention is given to ease of implementation. It is shown that FFT estimators fare poorly in low SNR and/or high spectrum-width situations. Several variants of a vector pulse-pair processor are postulated and an algorithm is developed for the resolution of phase angle ambiguity. This processor is found to be better than conventional processors at very low SNR values. A feasible approximation to the maximum entropy estimator is derived as well as a technique utilizing the maximization of the periodogram. It is found that a vector pulse-pair processor operating with four lags for clear air observation and a single lag (pulse-pair mode) for storm observation may be a good way to estimate Doppler velocities over the entire gamut of weather phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The literature contains many examples of digital procedures for the analytical treatment of electroencephalograms, but there is as yet no standard by which those techniques may be judged or compared. This paper proposes one method of generating an EEG, based on a computer program for Zetterberg's simulation. It is assumed that the statistical properties of an EEG may be represented by stationary processes having rational transfer functions and achieved by a system of software fillers and random number generators.The model represents neither the neurological mechanism response for generating the EEG, nor any particular type of EEG record; transient phenomena such as spikes, sharp waves and alpha bursts also are excluded. The basis of the program is a valid ‘partial’ statistical description of the EEG; that description is then used to produce a digital representation of a signal which if plotted sequentially, might or might not by chance resemble an EEG, that is unimportant. What is important is that the statistical properties of the series remain those of a real EEG; it is in this sense that the output is a simulation of the EEG. There is considerable flexibility in the form of the output, i.e. its alpha, beta and delta content, which may be selected by the user, the same selected parameters always producing the same statistical output. The filtered outputs from the random number sequences may be scaled to provide realistic power distributions in the accepted EEG frequency bands and then summed to create a digital output signal, the ‘stationary EEG’. It is suggested that the simulator might act as a test input to digital analytical techniques for the EEG, a simulator which would enable at least a substantial part of those techniques to be compared and assessed in an objective manner. The equations necessary to implement the model are given. The program has been run on a DEC1090 computer but is suitable for any microcomputer having more than 32 kBytes of memory; the execution time required to generate a 25 s simulated EEG is in the region of 15 s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental studies reveal a reduction in the values of permittivity for epoxy nanocomposites; at low filler loadings as compared to neat epoxy over a wide frequency range. This permittivity reduction is attributed to the interaction dynamics between nanoparticles: and epoxy chains at the interface region and interestingly, this interaction has also been found to influence the glass transition temperatures (T-g) of the examined nanocomposite systems. Accordingly, a dual nanolayer interface model for an epoxy based nanocomposite system is analyzed to explain the obtained permittivity characteristics.