78 resultados para Perpetual motion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple but self-consistent microscopic theory for the time dependent solvation energy of both ions and dipoles is presented which includes, for the first time, the details of the self-motion of the probe on its own solvation dynamics. The theory leads to several interesting predictions. The most important of them is that, for dipolar solvation, both the rotational and the translational motions of the dipolar solute probe can significantly accelerate the rate of solvation. In addition, the rotational self-motion of the solute can also give rise to an additional mechanism of nonexponentiality in solvation time correlation functions in otherwise slow liquids. A comparison between the present theoretical predictions and the recent experimental studies of Maroncelli et al. on solvation dynamics of aniline in l-propanol seems to indicate that the said experiments have missed the initial solvent response up to about 45 ps. After mapping the experimental results on the redefined time scale, the theoretical results can explain the experimental results for solvation of aniline in 1-propanol very well. For ionic solvation, the translational motion is significant for light solutes only. For example, for Li+ in water, translational motion speeds up the solvation by about 20%. The present theory demonstrates that in dipolar solvation the partial quenching of the self-motion due to the presence of specific solute-solvent interactions (such as H-bonding) may lead to a much slower solvation than that when the self-motion is present. This point has been discussed. In addition, we present the theoretical results for solvation of aniline in propylene carbonate, Here, the solvation is predicted to be complete within 15-20 ps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interest in low bit rate video coding has increased considerably. Despite rapid progress in storage density and digital communication system performance, demand for data-transmission bandwidth and storage capacity continue to exceed the capabilities of available technologies. The growth of data-intensive digital audio, video applications and the increased use of bandwidth-limited media such as video conferencing and full motion video have not only sustained the need for efficient ways to encode analog signals, but made signal compression central to digital communication and data-storage technology. In this paper we explore techniques for compression of image sequences in a manner that optimizes the results for the human receiver. We propose a new motion estimator using two novel block match algorithms which are based on human perception. Simulations with image sequences have shown an improved bit rate while maintaining ''image quality'' when compared to conventional motion estimation techniques using the MAD block match criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the translational and rotational motion in dense molecular liquids, detailed molecular dynamics simulations of Lennard-Jones ellipsoids have been carried out for three different values of the aspect ratio kappa. For ellipsoids with an aspect ratio equal to 2, the product of the translational diffusion coefficient (D-T) and the average orientational correlation time of the l-th rank harmonics (tau(lR)), converges to a nearly constant value at high density. Surprisingly, this density independent value of D-T tau(lR) is within 5% of the hydrodynamic prediction with the slip boundary condition. This is despite the fact that both D-T and tau(lR) themselves change nearly by an order of magnitude in the density range considered, and the rotational correlation function itself is strongly nonexponential. For small aspect ratios (kappa less than or equal to 1.5), the rotational correlation function remains largely Gaussian even at a very large density, while for a large aspect ratio (kappa greater than or equal to 3), the transition to the nematic liquid-crystalline phase precludes the hydrodynamic regime. Thus, the rotational dynamics of ellipsoids show great sensitivity to the aspect ratio. At low density, tau(lR) goes through a minimum value, indicating the role of interactions in enhancing the rate of orientational relaxation. (C) 1997 American Institute of Physics. [S0021-9606(97)50142-5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When synchronous motion does not exist, it is not possible to draw the classical mode shapes. In this paper, a representative shape of motion during free vibration of a non-classically damped system is sought. It is noted that this shape provides an optimal representation of free motion. Interpretations of the optimality thus introduced are presented. Their connection with non-proportionality of damping and of gyroscopy is brought out. In the spirit of the optimality presented in this paper, two indices of non-proportionality are defined. Properties of these indices are discussed. Comparison with other indices of non-proportionality available in the literature is presented. Illustrative examples are given. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the absence of near field strong motion records, the level of ground motion during the devastating 26 January 2001 earthquake has to be found by indirect means. For the city of Bhuj, three broad band velocity time histories have been recorded by India Meteorological Department. In this paper these data are processed to obtain an estimate of strong ground motion at Bhuj. It is estimated that the peak ground acceleration at Bhuj was of the order of 0.38 g. Ground motion in the surrounding region is indirectly found using available spectral response recorder (SRR) data. These instrument-based results are compared with analytical results obtained from a half-space regional model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brownian dynamics (BD) simulations have been carried out to explore the effects of the orientational motion of the donor-acceptor (D-A) chromophore pair on the Forster energy transfer between the D-A pair embedded in a polymer chain in solution. It is found that the usually employed orientational averaging (that is, replacing the orientational factor, kappa, by kappa (2) = 2/3) may lead to an error in the estimation of the rate of the reaction by about 20%. In the limit of slow orientational relaxation, the preaveraging of the orientational factor leads to an overestimation of the rate, while in the opposite limit of very fast orientational relaxation, the usual scheme underestimates the rate. The latter results from an interesting interplay between reaction and diffusion. On the other hand, when one of the chromophores is fixed, the preaveraged rate is found to be fairly reliable if the rotational relaxation of the chromophore is sufficiently fast. The present study also reveals a power law dependence of the FRET rate on the chain length (rate proportional to N- alpha, with alpha approximate to 2.6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the behaviour of a charged particle in an axially symmetric magnetic field having a neutral point, so as to find a possibility of confining a charged particle in a thermonuclear device. In order to study the motion we have reduced a three-dimensional motion to a two-dimensional one by introducing a fictitious potential. Following Schmidt we have classified the motion, as an ‘off-axis motion’ and ‘encircling motion’ depending on the behaviour of this potential. We see that the particle performs a hybrid type of motion in the negative z-axis, i.e. at some instant it is in ‘off-axis motion’ while at another instant it is in ‘encircling motion’. We have also solved the equation of motion numerically and the graphs of the particle trajectory verify our analysis. We find that in most of the cases the particle is contained. The magnetic moment is found to be moderately adiabatic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition in the boundary layer on a flat plate is examined from the point of view of intermittent production of turbulent spots. On the hypothesis of localized laminar breakdown, for which there is some expermental evidence, Emmons’ probability calculations can be extended to explain the observed statistical similarity of transition regions. Application of these ideas allows detailed calculations of the boundary layer parameters including mean velocity profiles and skin friction during transition. The mean velocity profiles belong to a universal one-parameter family with the intermittency factor as the parameter. From an examination of experimental data the probable existence of a relation between the transition Reynolds number and the rate of production of the turbulent spots is deduced. A simple new technique for the measurement of the intermittency factor by a Pitot tube is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion Estimation is one of the most power hungry operations in video coding. While optimal search (eg. full search)methods give best quality, non optimal methods are often used in order to reduce cost and power. Various algorithms have been used in practice that trade off quality vs. complexity. Global elimination is an algorithm based on pixel averaging to reduce complexity of motion search while keeping performance close to that of full search. We propose an adaptive version of the global elimination algorithm that extracts individual macro-block features using Hadamard transform to optimize the search. Performance achieved is close to the full search method and global elimination. Operational complexity and hence power is reduced by 30% to 45% compared to global elimination method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-axis micromanipulators, whose tip orientation and position can be controlled in real time in the scanning plane, enable versatile probing systems for 2.5-D nanometrology. The key to achieve high-precision probing systems is to accurately control the interaction point of the manipulator tip when its orientation is changed. This paper presents the development of a probing system wherein the deviation in the end point due to large orientation changes is controlled to within 10 nm. To achieve this, a novel micromanipulator design is first proposed, wherein the end point of the tip is located on the axis of rotation. Next, the residual tip motion caused by fabrication error and actuation crosstalk is modeled and a systematic method to compensate it is presented. The manipulator is fabricated and the performance of the developed scheme to control tip position during orientation change is experimentally validated. Subsequently, the two-axis probing system is demonstrated to scan the full top surface of a micropipette down to a diameter of 300 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical micro-scale model is developed to study the behavior of dendrite growth in presence of melt convection. In this method, an explicit, coupled enthalpy model is used to simulate the growth of an equiaxed dendrite, while a Volume of Fluid (VOF) method is used to track the movement of the dendrite in the convecting melt in a two-dimensional Eulerian framework. Numerical results demonstrate the effectiveness of the enthalpy model in simulating the dendritic growth involving complex shape, and the accuracy of VOF method in conserving mass and preserving the complex dendritic shape during motion. Simulations are performed in presence of uniform melt flow for both fixed and moving dendrites, and the difference in dendrite morphology is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.