137 resultados para Partial ordering
Resumo:
Electron paramagnetic resonance (EPR) and magnetic properties of nanowires of Pr0.57Ca0.41Ba0.02MnO3 (PCBMO) are studied and compared with those of the bulk material. PCBMO nanowires with diameter of 80-90 nm and length of similar to 3.5 mu m were synthesized by a low reaction temperature hydrothermal method and the bulk sample was prepared following a solid-state reaction route. The samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The bulk PCBMO manganite exhibits charge order at 230 K along with a ferromagnetic transition at 110 K. However, superconducting quantum interference device measurements on the PCBMO nanowires show a complete `melting' of charge ordering and a ferromagnetic transition at 115 K. This result is confirmed by the EPR intensity behavior as well. However, the EPR line width, which is reflective of the spin dynamics, shows a shallow minimum for nanowires at the temperature corresponding to the charge-ordering transition, i.e., 230 K. We interpret this result as an indication of the presence of charge-ordering fluctuations in the nanowires even though the static charge order is absent, thus heralding the occurrence of charge order in the bulk sample.
Resumo:
Contraction of an edge e merges its end points into a new single vertex, and each neighbor of one of the end points of e is a neighbor of the new vertex. An edge in a k-connected graph is contractible if its contraction does not result in a graph with lesser connectivity; otherwise the edge is called non-contractible. In this paper, we present results on the structure of contractible edges in k-trees and k-connected partial k-trees. Firstly, we show that an edge e in a k-tree is contractible if and only if e belongs to exactly one (k + 1) clique. We use this characterization to show that the graph formed by contractible edges is a 2-connected graph. We also show that there are at least |V(G)| + k - 2 contractible edges in a k-tree. Secondly, we show that if an edge e in a partial k-tree is contractible then e is contractible in any k-tree which contains the partial k-tree as an edge subgraph. We also construct a class of contraction critical 2k-connected partial 2k-trees.
Resumo:
Design criteria and full-diversity Distributed Space Time Codes (DSTCs) for the two phase transmission based cooperative diversity protocol of Jing-Hassibi and the Generalized Nonorthogonal Amplify and Forward (GNAF) protocol are reported, when the relay nodes are assumed to have knowledge of the phase component of the source to relay channel gains. It is shown that this under this partial channel state information (CSI), several well known space time codes for the colocated MIMO (Multiple Input Multiple Output) channel become amenable for use as DSTCs. In particular, the well known complex orthogonal designs, generalized coordinate interleaved orthogonal designs (GCIODs) and unitary weight single symbol decodable (UW-SSD) codes are shown to satisfy the required design constraints for DSTCs. Exploiting the relaxed code design constraints, we propose DSTCs obtained from Clifford Algebras which have low ML decoding complexity.
Resumo:
Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average power ratio (PAPR) and avoid the problem of turning off antennas. But CODs for 2(a) antennas with a + 1 complex variables, with no zero entries are not known in the literature for a >= 4. In this paper, a method of obtaining no zero entry (NZE) codes, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE CPODs for 16 antennas. Moreover, starting from certain NZE CPODs for n antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulations results show that bit error performance of our codes under average power constraint is same as that of the CODs and superior to CODs under peak power constraint.
Resumo:
Confinement and Surface specific interactions call induce Structures otherwise unstable at that temperature and pressure. Here we Study the groove specific water dynamics ill the nucleic acid sequences, poly-AT and poly-GC, in long B-DNA duplex chains by large scale atomistic molecular dynamics simulations, accompanied by thermodynamic analysis. While water dynamics in the major groove remains insensitive to the sequence differences, exactly the opposite is true for the minor groove water. Much slower water dynamics observed in the minor grooves (especially in the AT minor) call be attributed to all enhanced tetrahedral ordering (< t(h)>) of water. The largest value of < t(h)> in the AT minor groove is related to the spine of hydration found in X-ray Structure. The calculated configurational entropy (S-C) of the water molecules is found to be correlated with the self-diffusion coefficient of water in different region via Adam-Gibbs relation D = A exp(-B/TSC), and also with < t(h)>.
Resumo:
Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of similar to 3.5 angstrom in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action.
Resumo:
The occurrence of an enzyme hydrolyzing flavine adenine dinucleotide (FAD) was demonstrated in a number of seed extracts. The enzyme from Phaseolus radiatus was purified 104-fold by fractionation with ammonium sulfate and ethanol and by negative adsorption on alumina Cγ gel. The enzyme cleaves the POP bond of FAD to yield flavine mononucleotide and adenosine monophosphate. When reduced glutathione is added to the enzyme, it cleaves FAD at the COP bond to yield riboflavine, adenosine, and pyrophosphate, Both the activities are optimal at a pH of 7.2 and at a temperature of 37 . The Km for both the activities is 1.65 × 10−5 M. The stoichiometry and the identity of the products of both the treated and untreated enzyme were established. The untreated enzyme was not inhibited by pCMB or arsenite, but the treated enzyme was sensitive to both these inhibitors. The inhibition by pCMB could be reversed by monothiols and the inhibition by arsenite by dithiols.
Resumo:
The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.
Resumo:
The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.
Resumo:
1. 1. Sheep plasma α1-mucoprotein was isolated in an electrophoretically homogeneous state by a combination of ammonium sulphate saturation, isoelectric precipitation and preparative agar electrophoresis in a yield of approx. 150 mg/l of plasma. 2. 2. The mucoprotein was water-soluble, non-coagulable on heating at 100°, not precipitable by 1.8 M perchloric acid, 10% trichloroacetic acid but precipitable by saturated ammonium sulphate solution, 0.6 M sulfosalicylic acid and 5% phosphotungstic acid in 2 N HCl. It had E1 cm1 % value of 9.57 at 278 mμ in water, refractive-index index increment 1.9·10-4 (g/l) in water, isoelectric point at pH 4.45 (sodium acetate-acetic acid buffer) and was homogeneous in pH range 4.0-11.5 but at pH values 2.6 and 3.5 showed some dissociation. 3. 3. The mucoprotein had the following chemical composition: Nitrogen, 12.4%; polypeptide, 77.4%; total hexose (only mannose and galactose), 7.1%; fucose, 1.0%; glucosamine, 4.9% and sialic acid, 4.8%. It had no N-terminal amino acid.
Resumo:
A partially purified sheep liver enzyme that hydrolyzed dinucleotides at the pyrophosphate bond was obtained by solubilizing the 18,000g sediment with n-butanol and fractionating the solubilized enzyme with acetone. The enzyme activity when measured using FAD as substrate, (FAD → FMN + AMP), was optimal at pH 9.7 and temperatures between 30 °–36 ° and at 60 °. The rate of release of FMN with time occurred with an initial lag of 30 sec, a linear increase for 1 min, and a subsequent irregular rate. In the presence of orthophosphate (Pi; 10 μImage ), FMN was released at an uniformly continuous and enhanced rate. 32Pi was not incorporated into the substrate or products. Sodium arsenate counteracted the effects of Pi. The apparent Km and Vmax were 0.133 mImage and 100 units; and 0.133 mImage and 200 units, in the absence and presence of Pi, respectively. The temperature optimum was 42 ° in the presence of Pi.Negative cooperative interactions observed at low concentrations of FAD were abolished by the addition of Pi. The inhibition by AMP was sigmoid and Pi abolished this sigmoidal response. The enzyme hydrolyzed in addition to FAD, NAD+ and NADP+. Nucleoside triphosphates were potent inhibitors of the enzyme activity. The partial inhibition of the enzyme by o-phenanthroline and by p-hydroxymercuribenzoate could be reversed by Fe2+ ions and by reduced glutathione, respectively.
Resumo:
Usually metallicity accompanies ferromagnetism. K2Cr8O16 is one of the less common examples of magnetic materials, exhibiting ferromagnetism in the insulating state. Analyzing the electronic and magnetic properties within first principles electronic structure calculations, we find that the doped electrons due to K induce a charge-ordered and insulating ground state and interestingly also introduce a ferromagnetic coupling between the Cr ions. The primary considerations driving the charge ordering are found to be electrostatic ones with the charge being localized on two Cr atoms that minimize the electrostatic energy. The structural distortion that accompanies the ordering gives rise to a rare example of a charge-order driven ferromagnetic insulator.
Resumo:
We report magnetization and magnetoresistance studies of the geometrically frustrated spinel compound LiMn2O4 near its charge ordering temperature. The effect of a 7 T magnetic field is to very slightly shift the transition in the resistivity to lower temperatures resulting in large negative magnetoresistance with significant hysteresis. This hysteresis is not reflected in the magnetization. These observations are compared with what is found in the colossal magnetoresistance and charge ordering perovskite manganese oxides. The manner in which geometric frustration influences the coupling of charge and spin degrees of freedom is examined.
Resumo:
The paper proposes a time scale separated partial integrated guidance and control of an interceptor for engaging high speed targets in the terminal phase. In this two loop design, the outer loop is an optimal control formulation based on nonlinear model predictive spread control philosophies. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the dynamicinversion philosophy. However, unlike conventional designs, in both the loops the Six degree of freedom (Six-DOF) interceptor model is used directly. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Six-DOF simulation studies have been carried out accounting for three dimensional engagement geometry. Different comparison studies were also conducted to measure the performance of the algorithm.