51 resultados para PROLACTIN-RELEASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research paper presents the first results on the protein adsorption and release kinetics and in vitro biodegradability of cryogenically cured hydroxyapatite-gelatin based micro/macroporous scaffolds (CHAMPS). While the adsorption and release of bovine serum albumin (BSA) protein exhibits steady state behavior over an incubation period of up to 10 days, Fourier transform infrared (FT-IR) analysis importantly confirms the absence of any change in the secondary structure of BSA proteins due to interaction with the CHAMPS scaffold. The compression properties of the CHAMPS scaffold with interconnected porosity (pore size similar to 50-200 mm) is characterized by a non-linear stress-strain response with a strength close to 5 MPa and a maximum strain of up to 24%. The slow but systematic increase in weight loss over a period of 7 days as well as apatite layer formation indicates its good bioactivity. The extensive micro-computed tomography (micro-CT) analysis establishes cancellous bone-like highly interconnected and complex porous architecture of the CHAMPS scaffold. Importantly, the excellent adsorption (up to 50%) and release (up to 60% of adsorbed protein) of BSA has been uniquely attributed to the inherent porous microstructure of the CHAMPS scaffold. Overall, the present study provides an assessment of the interaction of protein with the gelatin-hydroxyapatite macroporous scaffold in vitro, as well as reporting for the first time the efficacy of such scaffolds to release 60% of BSA loaded onto the scaffold in vitro, which is significantly higher than earlier literature reports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation an attempt has been made to develop a new co-polymeric material for controlled release tablet formulations. The acrylamide grafting was successfully performed on the backbone of sago starch. The modified starch was tested for acute toxicity and drug-excipient compatibility study. The grafted material was used in making of controlled release tablets of lamivudine. The formulations were evaluated for physical characteristics such as hardness, friability, %drug content and weight variations. The in vitro release study showed that the optimized formulation exhibited highest correlation (R) value in case of Higuchi model and the release mechanism of the optimized formulation predominantly exhibited combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (T-max, C-max, AUC, V-d, T-1/2 and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir (R) was observed. The pharmacokinetics parameters were showed controlled pattern and better bioavailability. The optimized formulation exhibited good stability and release profile at the accelerated stability conditions. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the effect of stress on neuronal physiology is widely studied, its effect on the functionality of astrocytes is not well understood. We studied the effect of high doses of stress hormone corticosterone, on two physiological properties of astrocytes, i.e., gliotransmission and interastrocytic calcium waves. To study the release of peptidergic vesicles from astrocytes, hippocampal astrocyte cultures were transfected with a plasmid to express pro-atrial natriuretic peptide (ANP) fused with the emerald green fluorescent protein (ANP.emd). The rate of decrease in fluorescence of ANP.emd on application of ionomycin, a calcium ionophore was monitored. Significant increase in the rate of calcium-dependent exocytosis of ANP.emd was observed with the 100 nM and 1 M corticosterone treatments for 3 h, which depended on the activation of the glucocorticoid receptor. ANP.emd tagged vesicles exhibited increased mobility in astrocyte culture upon corticosterone treatment. Increasing corticosterone concentrations also resulted in concomitant increase in the calcium wave propagation velocity, initiated by focal ATP application. Corticosterone treatment also resulted in increased GFAP expression and F-actin rearrangements. FITC-Phalloidin immunostaining revealed increased formation of cross linked F-actin networks with the 100 nM and 1 M corticosterone treatment. Alternatively, blockade of actin polymerization and disruption of microtubules prevented the corticosterone-mediated increase in ANP.emd release kinetics. This study reports for the first time the effect of corticosterone on gliotransmission via modulation of cytoskeletal elements. As ANP acts on both neurons and blood vessels, modulation of its release could have functional implications in neurovascular coupling under pathophysiological conditions of stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports analytical modeling, simulation and experimental validation for switching and release times of an electrostatically actuated micromachined switch. Presented work is an extension of our earlier work [1] that analytically argued, and numerically and experimentally demonstrated, why pull-in time is larger that pull-up time when the actuation voltage is less than twice of the pull-in voltage. In this paper, switching dynamics is investigated under the influence of squeeze-film damping. Tests were performed on SOI (silicon-on-insulator) based parallel beams structures.Typical voltage requirement for actuation is in the range of 10-30 V. All the experiments were performed in normal atmospheric pressure. Measurement results confirm that the quality factor Q has appreciable effect on the release time compared to the switching time. The quality factor Q is extracted from the response measurement and compared with the ANSYS simulation result. In addition, the dynamic pull-in effect has also been studied and reported in this paper. A contribution of this work includes the effect of various phenomena such as squeeze-film damping, dynamic pull-in, and frequency pull-in effects on the switching dynamics of a MEMS switch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Japanese encephalitis virus (JEV) is a single stranded RNA virus that infects the central nervous system leading to acute encephalitis in children. Alterations in brain endothelial cells have been shown to precede the entry of this flavivirus into the brain, but infection of endothelial cells by JEV and their consequences are still unclear. Productive JEV infection was established in human endothelial cells leading to IFN-beta and TNF-alpha production. The MHC genes for HLA-A, -B, -C and HLA-E antigens were upregulated in human brain microvascular endothelial cells, the endothelial-like cell line, ECV 304 and human foreskin fibroblasts upon JEV infection. We also report the release/shedding of soluble HLA-E (sHLA-E) from JEV infected human endothelial cells for the first time. This shedding of sHLA-E was blocked by an inhibitor of matrix metalloproteinases (MMP). In addition, MMP-9, a known mediator of HLA solubilisation was upregulated by JEV. In contrast, human fibroblasts showed only upregulation of cell-surface HLA-E. Addition of UV inactivated JEV-infected cell culture supernatants stimulated shedding of sHLA-E from uninfected ECV cells indicating a role for soluble factors/cytokines in the shedding process. Antibody mediated neutralization of TNF-alpha as well as IFNAR receptor together not only resulted in inhibition of sHLA-E shedding from uninfected cells, it also inhibited HLA-E and MMP-9 gene expression in JEV-infected cells. Shedding of sHLA-E was also observed with purified TNF-alpha and IFN-beta as well as the dsRNA analog, poly (I:C). Both IFN-beta and TNF-alpha further potentiated the shedding when added together. The role of soluble MHC antigens in JEV infection is hitherto unknown and therefore needs further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of a mesoporous silica nanoparticle (MSN)-protamine hybrid system (MSN-PRM) is reported that selectively releases drugs in the presence of specific enzyme triggers present in the proximity of cancer cells. The enzyme trigger involved is a protease called trypsin, which is overexpressed in certain specific pathological conditions, such as inflammation and cancer. Overexpression of trypsin is known to be associated with invasion, metastasis, and growth in several cancers, such as leukemia, colon cancer, and colorectal cancer. The current system (MSN-PRM) consists of an MSN support in which mesopores are capped with an FDA-approved peptide drug protamine, which effectively blocks the outward diffusion of the drug molecules from the mesopores of the MSNs. On exposure to the enzyme trigger, the protamine cap disintegrates, opening up the molecular gates and releasing the entrapped drug molecules. The system exhibits minimal premature release in the absence of the trigger and selectively releases the encapsulated drugs in the presence of the proteases secreted by colorectal cancer cells. The ability of the MSN-PRM particles to deliver anticancer drugs to colorectal cancer cells has also been demonstrated. The hydrophobic drug is released into cancer cells subsequent to disintegration of the protamine cap, resulting in cell death. Drug-induced cell death in colorectal cancer cells is significantly enhanced when the hydrophobic drug that is known to degrade in aqueous environments is encapsulated in the MSN-PRM system in comparison to the free drug (P < 0.05). The system, which shows good biocompatibility and selective drug release, is a promising platform for cancer specific drug delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A family of high molecular weight castor oil (CO)-based biodegradable polyanhydrides was synthesized by a catalyst-free melt-condensation reaction between prepolymers of CO and sebacic acid (SA). The structure of the polymers was characterized by H-1 NMR and Fourier transform infrared spectroscopy, which indicated the formation of the anhydride bond along the polymer backbone. Thermal analysis and X-ray diffraction confirmed the semicrystalline nature of the polymers. Incorporation of SA enhanced the crystallinity of the polymer. The hydrophobic nature of these polymers was revealed by contact angle goniometry. Water wettability decreased with increase in SA content. Compressive tests demonstrated a sharp increase in strength and decrease in ductility with increasing SA content. In vitro hydrolytic degradation studies indicated surface-eroding behavior. The degradation rate decreased with an increase of SA content in the polymers because of increased crystallinity. The release studies of both hydrophobic and hydrophilic dyes followed zero-order kinetics. In vitro cell studies to assess the cytotoxicity of the polymer confirmed minimal toxicity of the degradation products. Thus, a family of CO-SA polyanhydrides have been synthesized and characterized for controlled release applications where the physical, mechanical, and degradation kinetics can be modulated by varying the weight fraction of the prepolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explains the reason behind pull-in time being more than pull-up time of many Radio Frequency Micro-Electro-Mechanical Systems (RF MEMS) switches at actuation voltages comparable to the pull-in voltage. Analytical expressions for pull-in and pull-up time are also presented. Experimental data as well as finite element simulations of electrostatically actuated beams used in RF-MEMS switches show that the pull-in time is generally more than the pull-up time. Pull-in time being more than pull-up time is somewhat counter-intuitive because there is a much larger electrostatic force during pull-in than the restoring mechanical force during the release. We investigated this issue analytically and numerically using a 1D model for various applied voltages and attribute this to energetics, the rate at which the forces change with time, and softening of the overall effective stiffness of the electromechanical system. 3D finite element analysis is also done to support the 1D model-based analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

pH-sensitive photonic composite hydrogel beads composed of sodium alginate and risedronate sodium (SA/RIS) was prepared crosslinked by Ca2+ owing to the ionic gelation of SA. The structure and surface morphology of the composite hydrogel beads were characterized by SEM. pH-sensitivity of these composite hydrogels beads and the release behaviors of drug from them were investigated. The results showed that the composite hydrogel beads had good pH-sensitivity. The drug loading and encapsulation efficiency were 27.7% and 92% for RIS, respectively. The cumulative release ratios of RIS from the composite hydrogel beads were 2.47% in pH 2.1 solution and 83 % in pH 6.8 solutions within 24 h, respectively. However, the cumulative release ratio of RIS in pH 7.4 solution reached 91% within 7 h. It is proposed that the novel photonic SA/RIS composite hydrogel bead could possess the potential of an increased intestinal absorption and fewer adverse effects of RIS. The pH and salt response of photonic hydrogel bead, as well as the encapsulation of macromolecules, are promising for applications in biomedicine and biotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface chemistry and the intrinsic porous architectures of porous substrates play a major role in the design of drug delivery systems. An interesting example is the drug elution characteristic from hydrothermally synthesised titania nanotubes with tunable surface chemistry. The variation in release rates of Ibuprofen (IBU) is largely influenced by the nature of the functional groups on titania nanotubes and pH of suspending medium. To elucidate the extent of interaction between the encapsulated IBU and the functional groups on titania nanotubes, the release profiles have been modelled with an empirical Hill equation. The analysis aided in establishing a probable mechanism for the release of IBU from the titania nanotubes. The study of controlled drug release from TiO2 has wider implication in the context of biomedical engineering. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic disassembly of tertiary amine-based poly(propyl ether imine) dendrimers, in the presence of either 9,10-anthraquinone or riboflavin tetraacetate and O-2(g), leads to di- and tripropanolamine monomers. An application is shown by solubilisation of a water-insoluble dye, Sudan I, in aq. dendrimer solution ('catch'), followed by its `release' upon disassembly of the dendrimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cantilevers made out of PECVD grown SiC films are reported here. The cantilevers were realized in two different methods isotropic etch (Dry release) and combination of wet etch and critical point dry release. The dry release process for Silicon isotropic etch results in excellent etch selectivity against SiC, to provide released structures. The optimized wet release process is able to overcome stiction issues to provide excellent SiC cantilevers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the effect of thin silicon nitride (Si3N4) induced tensile stress on the structural release of 200nm thick SOI beam, in the surface micro-machining process. A thin (20nm / 100nm) LPCVD grown Si3N4 is shown to significantly enhance the yield of released beam in wet release technique. This is especially prominent with increase in beam length, where the beams have higher tendency for stiction. We attribute this yield enhancement to the nitride induced tensile stress, as verified by buckling tendency and resonance frequency data obtained from optical profilometry and laser doppler vibrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum(II) complexes Pt(pap)(an-cat)] (1) and Pt(pap)(py-cat)] (2) with 2-(phenylazo)pyridine (pap), 4-2-(anthracen-9-ylmethylene)amino]ethyl]benzene-1,2-diol (H(2)an-cat), and 4-2-(pyren-1-ylmethylene)amino]ethyl]benzene-1,2-diol (H2py-cat) were prepared, and their photoinduced cytotoxicity was studied. The complexes were found to release catecholate ligand in the presence of excess glutathione (GSH), resulting in cellular toxicity in the cancer cells. The catecholate complex Pt(pap)(cat)] (3) was prepared and used as a control. Complex 3, which is structurally characterized by X-ray crystallography, has platinum(II) in a distorted square-planar geometry. The complexes are redox-active, showing responses near 0.6 and 1.0 V versus SCE in N,N-dimethylformamide/0.1 M tetrabutylammonium perchlorate corresponding to a two-step catechol oxidation process and at -0.3 and -1.3 V for reduction of the pap ligand. Complex 1 showed remarkable light-induced cytotoxicity in HaCaT (human skin keratinocytes) and MCF-7 (human breast cancer) cells, giving IC50 value of similar to 5 mu M in visible light of 400-700 nm and >40 mu M in the dark. The 2',7'-dichlorofluorescein diacetate (DCFDA) assay showed the generation of reactive oxygen species (ROS), which seems to trigger apoptosis, as is evident from the annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay. The fluorescence microscopic images showed significant nuclear localization of the complexes and free ligands. A mechanistic study revealed possible reduction of the coordinated azo bond of pap by cellular GSH, releasing the catecholate ligand and resulting in remarkable photochemotherapeutic action of the complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a continuous surge toward developing new biopolymers that exhibit better in vivo biocompatibility properties in terms of demonstrating a reduced foreign body response (FBR). One approach to mitigate the undesired FBR is to develop an implant capable of releasing anti-inflammatory molecules in a sustained manner over a long time period. Implants causing inflammation are also more susceptible to infection. In this article, the in vivo biocompatibility of a novel, biodegradable salicylic acid releasing polyester (SAP) has been investigated by subcutaneous implantation in a mouse model. The tissue response to SAP was compared with that of a widely used biodegradable polymer, poly(lactic acid-co-glycolic acid) (PLGA), as a control over three time points: 2, 4, and 16 weeks postimplantation. A long-term in vitro study illustrates a continuous, linear (zero order) release of salicylic acid with a cumulative mass percent release rate of 7.34 x 10(-4) h(-1) over similar to 1.5-17 months. On the basis of physicochemical analysis, surface erosion for SAP and bulk erosion for PLGA have been confirmed as their dominant degradation modes in vivo. On the basis of the histomorphometrical analysis of inflammatory cell densities and collagen distribution as well as quantification of proinflammatory cytokine levels (TNF-alpha and IL-1 beta), a reduced foreign body response toward SAP with respect to that generated by PLGA has been unambiguously established. The favorable in vivo tissue response to SAP, as manifest from the uniform and well-vascularized encapsulation around the implant, is consistent with the decrease in inflammatory cell density and increase in angiogenesis with time. The above observations, together with the demonstration of long-term and sustained release of salicylic acid, establish the potential use of SAP for applications in improved matrices for tissue engineering and chronic wound healing.