400 resultados para POLARIZED WAVE GENERATION
Resumo:
In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.
Resumo:
In this paper, wave propagation in multi-walled carbon nanotubes (MWNTs) are studied by modeling them as continuum multiple shell coupled through van der Waals force of interaction. The displacements, namely, axial, radial and circumferential displacements vary along the circumferential direction. The wave propagation are simulated using the wavelet based spectral finite element (WSFE) method. This technique involves Daubechies scaling function approximation in time and spectral element approach. The WSFE Method allows the study of wave properties in both time and frequency domains. This is in contrast to the conventional Fourier transform based analysis which are restricted to frequency domain analysis. Here, first, the wavenumbers and wave speeds of carbon nanotubes (CNTs) are Studied to obtain the characteristics of the waves. These group speeds have been compared with those reported in literature. Next, the natural frequencies of a single-walled carbon nanotube (SWNT) are studied for different values of the radius. The frequencies of the first five modes vary linearly with the radius of the SWNT. Finally, the time domain responses are simulated for SWNT and three-walled carbon nanotubes.
Resumo:
C13H14N2OS, M r = 246, is monoclinic, P21/c, with a = 7.214(1), b = 8.935(5), c = 20.243 (6) A, fl =99.42 (2) °, V = 1304.83 ,~3, Z = 4, D m = 1.23, D x =1.25 Mg m -3, p(Mo Ka, 2 = 0.7107 A) = 0.232 mm -~,F(000) = 520. The structure was solved by direct methods and refined to an R value of 0.042 using 1127 intensity measurements. The C=C and C-N bond distances differ considerably from their normal values. An appreciable rotation [38.3(4) °] about the C=C bond is observed, the bond length being 1.414(5)A.This is due to the combination of push-pull and steric effects.
Resumo:
Mr = 248, monoclinic, P21/n, a = 12.028 (2), b=7.168(2), c= 15.187(5)A, fl=91.88(2) °, Z= 4, V= 1308.6,~3, Din= 1.26, Dx= 1.263 Mgm -3, 2 (Cu Ka) = 1.5418 .A, g = 0.86 mm -1, F(000) = 536, T= 293 K. Final R = 5.6% for 2120 observed reflexions. Owing to the push-pull effect, the C=C bond distance is as long as 1.464 (2)/k with the twist angle about the bond 62.6.
Resumo:
With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincaré group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.
Resumo:
Following Ioffe's method of QCD sum rules the structure functions F2(x) for deep inelastic ep and en scattering are calculated. Valence u-quark and d-quark distributions are obtained in the range 0.1 less, approximate x <0.4 and compared with data. In the case of polarized targets the structure function g1(x) and the asymmetry Image Full-size image are calculated. The latter is in satisfactory agreement in sign and magnitude with experiments for x in the range 0.1< x < 0.4.
Resumo:
In this paper, we have probed the origin of SHG in copper nanoparticles by polarization-resolved hyper-Rayleigh scattering (HRS). Results obtained with various sizes of copper nanoparticles at four different wavelengths covering the wavelength range 738-1907 nm reveal that the origin of second harmonic generation (SHG) in these particles is purely dipolar in nature as long as the size (d) of the particles remains smaller compared to the wavelength (;.) of light ("small-particle limit"). However, contribution of the higher order multipoles coupled with retardation effect becomes apparent with an increase in the d/lambda ratio. We have identified the "small-particle limit" in the second harmonic generation from noble metal nanoparticles by evaluating the critical d/lambda ratio at which the retardation effect sets in the noble metal nanoparticles. We have found that the second-order nonlinear optical property of copper nanoparticles closely resembles that of gold, but not that of silver. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Through an analysis using the transfer function of a pinhole camera, the multiple imaging characteristics of photographic diffusers described by Grover and Tremblay [Appl. Opt.21,4500(1982)] is studied. It is found that only one pinhole diameter satisfies the optimum imaging condition for best contrast transfer at any desired spatial frequency. A simple method of generating random pinhole arrays with a controlled pinhole diameter is described. These pinhole arrays are later used to generate high frequency sinusoidal gratings from a coarse grid. The contrast in the final gratings is found to be reasonably high.
Resumo:
A monolithic surface acoustic wave (SAW) resonator operating at 156 MHz, in which the frequency controlling element is a Fabry–Perot type of SAW resonator and the gain element is a monolithic SAW amplifier (SiOx/InSb/SiOx structure located inside the SAW resonator cavity) is described and experimental details presented. Based on the existing experimental data, an uhf monolithic ring resonator oscillator is proposed. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
Knowledge of the generation of H202 in cellular oxidations has existed for many years. It has been assumed that H202 is tOxiC tO cells and the presence of catalase is indicative of a detoxication mechanism. Other radicals of oxygen were recently recognized to be more potent destructive agents of biological material than H202. Also catalase and other peroxidases utilize H202 in some cellular oxidation processes leading to several important metabolites. Thus, the generation of H202 in cellular processes seems to be purposeful and H202 can not be dismissed as a mere undesirable byproduct. Biological formation of H202 is not limited to the previously known flavoproteins and some copper enzymes, but other redox systems, particularly heme and non-heme iron proteins, are now found to undergo auto-oxidation yielding H202. The capacity for generation of H202 is now found to be widespread in a variety of organisms and in the organdies of the cells. The reduction of oxygen to H20 by mitochondrial cytochrome oxidase being the predominant oxygen-utilizing reaction had over-shadowed the importance of the quantitatively minor pathways. Under aerobic conditions generation of H202 by a Variety of biomembranes has now been found to be a physiological event interlinked with phenomena such as phagocytosis, transport processes and thermogenesis in some as yet unidentified way. The underlying mechanisms of these processes seem to involve generation and utilization of H202 in mitochondria, microsomes, peroxisomes or plasma membranes. This review gives an account of the potential of biomembranes to generate H202 and its implication in the cellular processes.
Resumo:
A fuzzy logic based centralized control algorithm for irrigation canals is presented. Purpose of the algorithm is to control downstream discharge and water level of pools in the canal, by adjusting discharge release from the upstream end and gates settings. The algorithm is based on the dynamic wave model (Saint-Venant equations) inversion in space, wherein the momentum equation is replaced by a fuzzy rule based model, while retaining the continuity equation in its complete form. The fuzzy rule based model is developed on fuzzification of a new mathematical model for wave velocity, the derivational details of which are given. The advantages of the fuzzy control algorithm, over other conventional control algorithms, are described. It is transparent and intuitive, and no linearizations of the governing equations are involved. Timing of the algorithm and method of computation are explained. It is shown that the tuning is easy and the computations are straightforward. The algorithm provides stable, realistic and robust outputs. The disadvantage of the algorithm is reduced precision in its outputs due to the approximation inherent in the fuzzy logic. Feed back control logic is adopted to eliminate error caused by the system disturbances as well as error caused by the reduced precision in the outputs. The algorithm is tested by applying it to water level control problem in a fictitious canal with a single pool and also in a real canal with a series of pools. It is found that results obtained from the algorithm are comparable to those obtained from conventional control algorithms.
Resumo:
A detailed analy~is on the propagation of a sinusoidal flood wave in a wide prismatic open channel b.as hen made by numc? ii.~ll~integrating We govemins nondimenional equations of unsteady flow in an open chamei. EmpE:dsis has been laid on the effect of wave parmefen on th propagation of 6.8 sinusoidal wave. Results show that the amount of subsidence is more in the case of small wave anplltude and wave duration cases. Further, wave duration has been noticed to have a relatively Vier influence on subsidence than wave amplitude. The speed at which the peak of the wave moves is observed to be a function of only the wave amplitude.
Resumo:
The recently introduced generalized pencil of Sudarshan which gives an exact ray picture of wave optics is analysed in some situations of interest to wave optics. A relationship between ray dispersion and statistical inhomogeneity of the field is obtained. A paraxial approximation which preserves the rectilinear propagation character of the generalized pencils is presented. Under this approximation the pencils can be computed directly from the field conditions on a plane, without the necessity to compute the cross-spectral density function in the entire space as an intermediate quantity. The paraxial results are illustrated with examples. The pencils are shown to exhibit an interesting scaling behaviour in the far-zone. This scaling leads to a natural generalization of the Fraunhofer range criterion and of the classical van Cittert-Zernike theorem to planar sources of arbitrary state of coherence. The recently derived results of radiometry with partially coherent sources are shown to be simple consequences of this scaling.
Resumo:
Polarized i.r. spectra of oriented polycrystals and the i.r. and Raman spectra of polycrystalline samples of pyridine-2-thione have been obtained. The Raman spectra of a solution of pyridine-2-thione has also been measured and the polarization of many lines determined. The i.r. spectra of S-methyl and N-deuterated compounds have also been investigated. A complete assignment of all the observed peaks has been possible. The results are correlated with the assignments available for related systems.