75 resultados para Oxygen species


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutral half-sandwich organometallic ruthenium(II) complexes of the type (?6-cymene)RuCl2(L)] (H1H10), where L represents a heterocyclic ligand, have been synthesized and characterized spectroscopically. The structures of five complexes were also established by single-crystal X-ray diffraction confirming a piano-stool geometry with ?6 coordination of the arene ligand. Hydrogen bonding between the N?H group of the heterocycle and a chlorine atom attached to Ru stabilizes the metalligand interaction. Complexes coordinated to a mercaptobenzothiazole framework (H1) or mercaptobenzoxazole (H6) showed high cytotoxicity against several cancer cells but not against normal cells. In vitro studies have shown that the inhibition of cancer cell growth involves primarily G1-phase arrest as well as the generation of reactive oxygen species (ROS). The complexes are found to bind DNA in a non-intercalative fashion and cause unwinding of plasmid DNA in a cell-free medium. Surprisingly, the cytotoxic complexes H1 and H6 differ in their interaction with DNA, as observed by biophysical studies, they either cause a biphasic melting of the DNA or the inhibition of topoisomerase IIa activity, respectively. Substitution of the aromatic ring of the heterocycle or adding a second hydrogen-bond donor on the heterocycle reduces the cytotoxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iron(II) complexes Fe(L)(2)](2+) as perchlorate (1-3) and chloride (1a-3a) salts, where L is 4'-phenyl-2,2':6',2 `'-terpyridine (phtpy in 1, 1a), 4'-(9-anthracenyl)-2,2':6',2 `'-terpyridine (antpy in 2, 2a) and 4'-(1-pyrenyl)-2,2':6',2 `'-terpyridine (pytpy in 3, 3a), were prepared and their photocytotoxicity studied. The diamagnetic complexes 1-3 having an FeN6 core showed an Fe(III)-Fe(II) redox couple near 1.0 V vs. saturated calomel electrode in MeCN-0.1 M tetrabutylammonium perchlorate. Complexes 2 and 3, in addition, displayed a quasi-reversible ligand-based redox process near 0.0 V. The redox and spectral properties are rationalized from the theoretical studies. The complexes bind to DNA in a partial intercalative mode. The pytpy complex efficiently photo-cleaves DNA in green light via superoxide and hydroxyl radical formation. The antpy and pytpy complexes exhibited a remarkable photocytotoxic effect in HeLa cancer cells (IC50, similar to 9 mu M) in visible light (400-700 nm), while remaining essentially nontoxic in dark (IC50, similar to 90 mu M). Formation of reactive oxygen species (ROS) inside the HeLa cells was evidenced from the fluorescence enhancement of dichlorofluorescein upon treatment with the pytpy complex followed by photo-exposure. The antpy and pytpy complexes were used for cellular imaging. Confocal imaging and dual staining study using propidium iodide (PI) showed nuclear localization of the complexes. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Typhoidal and non-typhoidal infection by Salmonella is a serious threat to human health. Ciprofloxacin is the last drug of choice to clear the infection. Ciprofloxacin, a gyrase inhibitor, kills bacteria by inducing chromosome fragmentation, SOS response and reactive oxygen species (ROS) in the bacterial cell. Curcumin, an active ingredient from turmeric, is a major dietary molecule among Asians and possesses medicinal properties. Our research aimed at investigating whether curcumin modulates the action of ciprofloxacin. We investigated the role of curcumin in interfering with the antibacterial action of ciprofloxacin in vitro and in vivo. RTPCR, DNA fragmentation and confocal microscopy were used to investigate the modulation of ciprofloxacin-induced SOS response, DNA damage and subsequent filamentation by curcumin. Chemiluminescence and nitroblue tetrazolium reduction assays were performed to assess the interference of curcumin with ciprofloxacin-induced ROS. DNA binding and cleavage assays were done to understand the rescue of ciprofloxacin-mediated gyrase inhibition by curcumin. Curcumin interferes with the action of ciprofloxacin thereby increasing the proliferation of Salmonella Typhi and Salmonella Typhimurium in macrophages. In a murine model of typhoid fever, mice fed with curcumin had an increased bacterial burden in the reticuloendothelial system and succumbed to death faster. This was brought about by the inhibition of ciprofloxacin-mediated downstream signalling by curcumin. The antioxidant property of curcumin is crucial in protecting Salmonella against the oxidative burst induced by ciprofloxacin or interferon (IFN), a pro-inflammatory cytokine. However, curcumin is unable to rescue ciprofloxacin-induced gyrase inhibition. Curcumins ability to hinder the bactericidal action of ciprofloxacin and IFN might significantly augment Salmonella pathogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abrus precatorius is highly regarded as a universal panacea in the herbal medicine with diverse pharmacological activity spectra. This experimental study on the mechanism of the anticancer activity of A. precatorius leaf extracts, may offer new evidence for A. precatorius in the treatment of breast cancer in clinical practice. Cell death was determined by using MTT assay. Further analyses were carried out by doing DNA laddering, PARP cleavage, FACS, semi-quantitative RT-PCR and detection of cellular reactive oxygen species (ROS) by DCFDA assay. A. precatorius showed very striking inhibition on MDA-MB-231 cells. MTT assay showed more than 75 % inhibition of the cells and treated cells indicated visible laddering pattern with thick compact band. PARP cleavage produced 89 kDa cleavage product which was associated with apoptosis. Flow cytometer exhibited a sub-G0/G1 peak as an indicative of apoptosis. mRNA expression level of apoptosis-related genes p21 and p53 was markedly increased in cells treated with the extract as compared to control. The up-regulation of p21 and p53 may be the molecular mechanisms by which A. precatorius extract which induces apoptosis. An increase in the concentration of A. precatorius extract does not generate ROS, instead it reduces ROS formation in MDA-MB-231 cells, as evident from the shift in fluorescence below untreated control. This is the first report showing that A. precatorius leaf extract exhibits a growth inhibitory effect by induction of apoptosis in MDA-MB-231 cells. Our results contribute towards validation of the A. precatorius extract as a potentially effective chemopreventive or therapeutic agent against breast cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Approximately one third of the world population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. A better understanding of the pathogen biology is crucial to develop new tools/strategies to tackle its spread and treatment. In the host macrophages, the pathogen is exposed to reactive oxygen species, known to damage dGTP and GTP to 8-oxo-dGTP and 8-oxo-GTP, respectively. Incorporation of the damaged nucleotides in nucleic acids is detrimental to organisms. MutT proteins, belonging to a class of Nudix hydrolases, hydrolyze 8-oxo-G nucleoside triphosphates/diphosphates to the corresponding nucleoside monophosphates and sanitize the nucleotide pool. Mycobacteria possess several MutT proteins. However, a functional homolog of Escherichia coli MutT has not been identified. Here, we characterized MtuMutT1 and Rv1700 proteins of M. tuberculosis. Unlike other MutT proteins, MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP, and 8-oxo-GTP to 8-oxo-GDP. Rv1700 then converts them to the corresponding nucleoside monophosphates. This observation suggests the presence of a two-stage mechanism of 8-oxo-dGTP/8-oxo-GTP detoxification in mycobacteria. MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP with a K-m of similar to 50 mu M and V-max of similar to 0.9 pmol/min per ng of protein, and Rv1700 converts 8-oxo-dGDP to 8-oxo-dGMP with a K-m of similar to 9.5 mu M and V-max of similar to 0.04 pmol/min per ng of protein. Together, MtuMutT1 and Rv1700 offer maximal rescue to E. coli for its MutT deficiency by decreasing A to C mutations (a hallmark of MutT deficiency). We suggest that the concerted action of MtuMutT1 and Rv1700 plays a crucial role in survival of bacteria against oxidative stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iron(III) complexes FeL(B)] (1-4) of a tetradentate phenolate-based ligand (H3L) and biotin-conjugated dipyridophenazine bases (B), viz. 7-aminodipyrido 3,2-a: 2',3'-c]-phenazine (dppza in 1), (N-dipyrido3,2-a: 2',3'-c]-phenazino) amidobiotin (dppzNB in 2), dipyrido 3,2-a: 2',3'-c]-phenazine-11-carboxylic acid (dppzc in 3) and 2-((2-biotinamido) ethyl) amidodipyrido 3,2-a: 2',3'-c]-phenazine (dppzCB in 4) are prepared, characterized and their interaction with streptavidin and DNA and their photocytotoxicity and cellular uptake in various cells studied. The high-spin iron(III) complexes display Fe(III)/Fe(II) redox couple near -0.7V versus saturated calomel electrode in dimethyl sulfoxide-0.1M tetrabutylammonium perchlorate. The complexes show non-specific interaction with DNA as determined from the binding studies. Complexes with appended biotin moiety show similar binding to streptavidin as that of free biotin, suggesting biotin conjugation to dppz does not cause any loss in its binding affinity to streptavidin. The photocytotoxicity of the complexes is tested in HepG2, HeLa and HEK293 cell lines. Complex 2 shows higher photocytotoxicity in HepG2 cells than in HeLa or HEK293, forming reactive oxygen species. This effect is attributed to the presence of overexpressed sodium-dependent multi-vitamin transporters in HepG2 cells. Microscopic studies in HepG2 cells show internalization of the biotin complexes 2 and 4 essentially occurring by receptor-mediated endocytosis, which is similar to that of native biotin and biotin fluorescein isothiocyanate conjugate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for > 24 h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and nonprotein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 degrees C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6 h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although HA is highly biocompatible, one of the major disadvantages of HA include the lack of antibacterial property. In an earlier study, we demonstrated the potential role of magnetic field stimulation on bactericidal property in vitro. Following this, it was hypothesized that antibacterial property can be realized if bacteria are grown on magnetic biocomposites in vitro. In addressing this issue, this study demonstrates the development of HA-Fe3O4-based magnetic substrate with multifunctional properties. For this purpose, HA-xFe(3)O(4) (x: 10, 20 and 40wt%) powder compositions were sintered using uniquely designed spark plasma sintering conditions (three stage sintering with final holding temperature of 1050 degrees C for 5min). A saturation magnetization of 24emu/g is measured with HA-40%Fe3O4. Importantly, all the HA-Fe3O4 composites demonstrated bactericidal property by rupturing the membrane of Escherichia coli bacteria, while supporting cell growth of metabolically active human fetal osteoblast cells over 8d culture. A systematic decrease in bacterial viability with Fe3O4 addition is consistent with a commensurate increase in reactive oxygen species (ROS).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The industrial production and commercial applications of titanium dioxide nanoparticles have increased considerably in recent times, which has increased the probability of environmental contamination with these agents and their adverse effects on living systems. This study was designed to assess the genotoxicity potential of TiO2 NPs at high exposure concentrations, its bio-uptake, and the oxidative stress it generated, a recognised cause of genotoxicity. Allium cepa root tips were treated with TiO2 NP dispersions at four different concentrations (12.5, 25, 50, 100 mu g/mL). A dose dependant decrease in the mitotic index (69 to 21) and an increase in the number of distinctive chromosomal aberrations were observed. Optical, fluorescence and confocal laser scanning microscopy revealed chromosomal aberrations, including chromosomal breaks and sticky, multipolar, and laggard chromosomes, and micronucleus formation. The chromosomal aberrations and DNA damage were also validated by the comet assay. The bio-uptake of TiO2 in particulate form was the key cause of reactive oxygen species generation, which in turn was probably the cause of the DNA aberrations and genotoxicity observed in this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucose-appended photocytotoxic iron(III) complexes of a tridentate Schiff base phenolate ligand Fe(bpyag) (L)] (NO3) (1-3), where bpyag is N,N-bis(2- pyridylmethyl)-2-aminoethyl-beta-D-glucopyranoside and H2L is 3-(2-hydroxyphenylimino)-1-phenylbutan-1-one (H(2)phap) in 1, 3-(2-hydroxyphenylimino)-9-anthrylbutan-1-one (H(2)anap) 2, and 3- (2-hydroxyphenylimino)-1-pyrenylbutan-1-one (H(2)pyap) in 3, were synthesized and characterized. The complex Fe(dpma)(anapn(NO3) (4), having bis-(2-pyridylmethyl)benzylamine (dpma), in which the glucose moiety of bpyag is substituted by a phenyl group, was used as a control, and the complex Fe(dpma)(anap)](PF6) (4a) was structurally characterized by X-ray crystallography. The structure shows a FeN4O2 core in a distorted octahedral geometry. The high-spin iron(III) complexes with magnetic moment value of similar to 5.9 mu(B) showed a low-energy phenolate-to-Fe(III) charge-transfer (CT) absorption band as a shoulder near 500 nm with a tail extending to 700 nm and an irreversible Fe(III)-Fe(II) redox couple near -0.6 V versus saturated calomel electrode. The complexes are avid binders to calf thymus DNA and showed photocleavage of supercoiled pUC19 DNA in red (647 nm) and green (532 nm) light. Complexes 2 and 3 displayed significant photocytotoxicity in red light, with an IC50 value of similar to 20 mu M in HeLa and HaCaT cells, and no significant toxicity in dark. The cell death is via an apoptotic pathway, by generation of reactive oxygen species. Preferential internalization of the carbohydrate-appended complexes 2 and 3 was evidenced in HeLa cells as compared to the control complex 4. A 5-fold increase in the cellular uptake was observed for the active complexes in HeLa cells. The photophysical properties of the complexes are rationalized from the density functional theory calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Benzhydroxamate (BHA) iron(III) complexes Fe(BHA)(L)ClICI (I, 2)], where L is (phenyl)dipicolylamine (phdpa in I) and (pyrenyl)dipicolylamine (pydpa in 2), were prepared and their photocytotoxicity in visible (400-700 nm) and red (600-720 nm) light was studied. Complex 1 was structurally characterized by X-ray crystallography. The complexes have high-spin iron(III) centers. Complex 2, with a pyrenyl fluorophore, was used for cellular imaging, showing both mitochondrial and nuclear localization in the fluorescence microscopic study. The complex exhibited photocytotoxicity in red light in HeLa cancer cells, giving IC50 value of 24.4(+/- 0.4) pM, but remained essentially non-toxic in the dark. The involvement of reactive oxygen species and an apoptotic nature of cell death were observed from the cellular studies. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glioblastoma (GBM) is the most aggressive type of brain tumor and shows very poor prognosis. Here, using genome-wide methylation analysis, we show that G-CIMP+ and G-CIMP-subtypes enrich distinct classes of biological processes. One of the hypermethylated genes in GBM, ULK2, an upstream autophagy inducer, was found to be down-regulated in GBM. Promoter hypermethylation of ULK2 was confirmed by bisulfite sequencing. GBM and glioma cell lines had low levels of ULK2 transcripts, which could be reversed upon methylation inhibitor treatment. ULK2 promoter methylation and transcript levels showed significant negative correlation. Ectopic overexpression of ULK2-induced autophagy, which further enhanced upon nutrient starvation or temozolomide chemotherapy. ULK2 also inhibited the growth of glioma cells, which required autophagy induction as kinase mutant of ULK2 failed to induce autophagy and inhibit growth. Furthermore, ULK2 induced autophagy and inhibited growth in Ras-transformed immortalized Baby Mouse Kidney (iBMK) ATG5(+/+) but not in autophagy-deficient ATG5(-/-) cells. Growth inhibition due to ULK2 induced high levels of autophagy under starvation or chemotherapy utilized apoptotic cell death but not at low levels of autophagy. Growth inhibition by ULK2 also appears to involve catalase degradation and reactive oxygen species generation. ULK2 overexpression inhibited anchorage independent growth, inhibited astrocyte transformation in vitro and tumor growth in vivo. Of all autophagy genes, we found ULK2 and its homologue ULK1 were only down-regulated in all grades of glioma. Thus these results altogether suggest that inhibition of autophagy by ULK1/2 down-regulation is essential for glioma development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iron(III) complexes Fe(L)(L') (NO3)]-in which L is phenyl-N, N-bis(pyridin-2-yl) methyl]methanamine (1), (anthracen-9-yl)N, N-bis(pyridin-2-yl) methyl] methanamine (2), (pyreny-1-yl)-N, N-bis(pyridin- 2-yl) methyl] methanamine (3-5), and L' is catecholate (1-3), 4-tert-butyl catecholate (4), and 4-(2-aminoethyl)benzene- 1,2-diolate (5)-were synthesized and their photocytotoxic proper-ties examined. The five electron-paramagnetic complexes displayed a FeIII/ Fe-II redox couple near similar to 0.4 V versus a saturated calomel electrode (SCE) in DMF/0.1m tetrabutylammonium perchlorate (TBAP). They showed unpre-cedented photocytotoxicity in red light (600-720 nm) to give IC50-15 mm in various cell lines by means of apoptosis to generate reactive oxygen species. They were ingested in the nucleus of HeLa and HaCaT cells in 4 h, thereby interacting favorably with calf thymus (ct)-DNA and photocleaving pUC19 DNA in red light of 785 nm to form hydroxyl radicals.