208 resultados para Ordinary differential operators
Resumo:
The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.
Resumo:
The flapping equation for a rotating rigid helicopter blade is typically derived by considering (1)small flap angle, (2) small induced angle of attack and (3) linear aerodynamics. However, the use of nonlinear aerodynamics such as dynamic stall can make the assumptions of small angles suspect as shown in this paper. A general equation describing helicopter blade flap dynamics for large flap angle and large induced inflow angle of attack is derived. A semi-empirical dynamic stall aerodynamics model (ONERA model) is used. Numerical simulations are performed by solving the nonlinear flapping ordinary differential equation for steady state conditions and the validity of the small angle approximations are examined. It is shown that the small flapping assumption, and to a lesser extent, the small induced angle ofattack assumption, can lead to inaccurate predictions of the blade flap response in certain flight conditions for some rotors when nonlinear aerodynamics is considered. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The dissolution, accompanied by chemical reaction, of monodisperse solid particles has been analysed. The resulting model, which accounts for the variation of mass transfer coefficient with the size of the dissolving particles, yields an approximate analytical form of a kinetic function. Rigorous numerical and approximate analytical solutions have been obtained for the governing system of nonlinear ordinary differential equations. The transient nature of the dissolution process as well as the accuracy of the analytical solution is brought out by the rigorous numerical solution. The analytical solution is fairly accurate for the major part of the range of operational times encountered in practice.
Resumo:
Our investigations in this paper are centred around the mathematical analysis of a ldquomodal waverdquo problem. We have considered the axisymmetric flow of an inviscid liquid in a thinwalled viscoelastic tube under certain simplifying assumptions. We have first derived the propagation space equations in the long wave limit and also given a general procedure to derive these equations for arbitrary wave length, when the flow is irrotational. We have used the method of operators of multiple scales to derive the nonlinear Schrödinger equation governing the modulation of periodic waves and we have elaborated on the ldquolong modulated wavesrdquo and the ldquomodulated long wavesrdquo. We have also examined the existence and stability of Stokes waves in this system. This is followed by a discussion of the progressive wave solutions of the long wave equations. One of the most important results of our paper is that the propagation space equations are no longer partial differential equations but they are in terms of pseudo-differential operators.Die vorliegenden Untersuchungen beziehen sich auf die mathematische Behandlung des ldquorModalwellenrdquo-Problems. Die achsensymmetrische Strömung einer nichtviskosen Flüssigkeit in einem dünnwandigen viskoelastischen Rohr, unter bestimmten vereinfachenden Annahmen, wird betrachtet. Zuerst werden die Gleichungen des Ausbreitungsraumes im Langwellenbereich abgeleitet und eine allgemeine Methode zur Herleitung dieser Gleichungen für beliebige Wellenlängen bei nichtrotierender Strömung angegeben. Eine Operatorenmethode mit multiplem Maßstab wird verwendet zur Herleitung der nichtlinearen Schrödinger-Gleichung für die Modulation der periodischen Wellen, und die ldquorlangmodulierten Wellenrdquo sowie die ldquormodulierten Langwellenrdquo werden aufgezeigt. Weiters wird die Existenz und die Stabilität der Stokes-Wellen im System untersucht. Anschließend werden die progressiven Wellenlösungen der Langwellengleichungen diskutiert. Eines der wichtigsten Ergebnisse dieser Arbeit ist, daß die Gleichungen des Ausbreitungsraumes keine partiellen Differentialgleichungen mehr sind, sondern Ausdrücke von Pseudo-Differentialoperatoren.
Resumo:
The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter lambda, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist.
Resumo:
The nonaxisymmetric unsteady motion produced by a buoyancy-induced cross-flow of an electrically conducting fluid over an infinite rotating disk in a vertical plane and in the presence of an applied magnetic field normal to the disk has been studied. Both constant wall and constant heat flux conditions have been considered. It has been found that if the angular velocity of the disk and the applied magnetic field squared vary inversely as a linear function of time (i.e. as (1??t*)?1, the governing Navier-Stokes equation and the energy equation admit a locally self-similar solution. The resulting set of ordinary differential equations has been solved using a shooting method with a generalized Newton's correction procedure for guessed boundary conditions. It is observed that in a certain region near the disk the buoyancy induced cross-flow dominates the primary von Karman flow. The shear stresses induced by the cross-flow are found to be more than these of the primary flow and they increase with magnetic parameter or the parameter ? characterizing the unsteadiness. The velocity profiles in the x- and y-directions for the primary flow at any two values of the unsteady parameter ? cross each other towards the edge of the boundary layer. The heat transfer increases with the Prandtl number but reduces with the magnetic parameter.
Resumo:
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The unsteady free convection boundary layer at the stagnation point of a two-dimensional body and an axisymmetric body with prescribed surface heat flux or temperature has been studied. The magnetic field is applied parallel to the surface and the effect of induced magnetic field has been considered. It is found that for certain powerlaw distribution of surface heat flux or temperature and magnetic field with time, the governing boundary layer equations admit a self-similar solution locally. The resulting nonlinear ordinary differential equations have been solved using a finite element method and a shooting method with Newton's corrections for missing initial conditions. The results show that the skin friction and heat transfer coefficients, and x-component of the induced magnetic field on the surface increase with the applied magnetic field. In general, the skin friction, heat transfer and x-component of the induced magnetic field for axisymmetric case are more than those of the two-dimensional case. Also they change more when the surface heat flux or temperature decreases with time than when it increases with time. The skin friction, heat transfer and x-component of the induced magnetic field are significantly affected by the magnetic Prandtl number and they increase as the magnetic Prandtl number decreases. The skin friction and x-component of the magnetic field increase with the dissipation parameter, but heat transfer decreases.
Resumo:
A new approach based on variable density in conjunction with shallow shell theory is proposed to analyse rotating shallow shell of variable thickness. Coupled non-linear ordinary differential equations governing shallows shells of variable thickness are first derived before applying the variable density approach. Results obtained from the new approach compare well with FEM calculation for a wide range of profiles considered in this paper.
Resumo:
Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.
Resumo:
Utilizing the commutativity property of the Cartesian coordinate differential operators arising in the boundary conditions associated with the propagation of surface water waves against a vertical cliff, under the assumptions of linearized theory, the problem of obliquely incident surface waves is considered for solution. The case of normal incidence, handled by previous workers follow as a particular limiting case of the present problem, which exhibits a source/sink type behavior of the velocity potential at the shore-line. An independent method of attack is also presented to handle the case of normal incidence.
Resumo:
This paper analyses the behaviour of a general class of learning automata algorithms for feedforward connectionist systems in an associative reinforcement learning environment. The type of connectionist system considered is also fairly general. The associative reinforcement learning task is first posed as a constrained maximization problem. The algorithm is approximated hy an ordinary differential equation using weak convergence techniques. The equilibrium points of the ordinary differential equation are then compared with the solutions to the constrained maximization problem to show that the algorithm does behave as desired.
Resumo:
We study in great detail a system of three first-order ordinary differential equations describing a homopolar disk dynamo (HDD). This system displays a large variety of behaviors, both regular and chaotic. Existence of periodic solutions is proved for certain ranges of parameters. Stability criteria for periodic solutions are given. The nonintegrability aspects of the HDD system are studied by investigating analytically the singularity structure of the system in the complex domain. Coexisting attractors (including period-doubling sequence) and coexisting strange attractors appear in some parametric regimes. The gluing of strange attractors and the ungluing of a strange attractor are also shown to occur. A period of bifurcation leading to chaos, not observed for other chaotic systems, is shown to characterize the chaotic behavior in some parametric ranges. The limiting case of the Lorenz system is also studied and is related to HDD.
Resumo:
The unsteady laminar incompressible boundary layer flow of an electrically conducting fluid in the stagnation region of two-dimensional and axisymmetric bodies with an applied magnetic field has been studied. The boundary layer equations which are parabolic partial differential equations with three independent variables have been reduced to a system of ordinary differential equations by using suitable transformations and then solved numerically using a shooting method. Here, we have obtained new solutions which are solutions of both the boundary layer and Navier-Stokes equations.
Resumo:
There exist several standard numerical methods for integrating ordinary differential equations. However, if one is interested in integration of Hamiltonian systems, these methods can lead to wrong results. This is due to the fact that these methods do not explicitly preserve the so-called 'symplectic condition' (that needs to be satisfied for Hamiltonian systems) at every integration step. In this paper, we look at various methods for integration that preserve the symplectic condition.