330 resultados para Optimal switch allocation
Resumo:
We consider a network in which several service providers offer wireless access to their respective subscribed customers through potentially multihop routes. If providers cooperate by jointly deploying and pooling their resources, such as spectrum and infrastructure (e.g., base stations) and agree to serve each others' customers, their aggregate payoffs, and individual shares, may substantially increase through opportunistic utilization of resources. The potential of such cooperation can, however, be realized only if each provider intelligently determines with whom it would cooperate, when it would cooperate, and how it would deploy and share its resources during such cooperation. Also, developing a rational basis for sharing the aggregate payoffs is imperative for the stability of the coalitions. We model such cooperation using the theory of transferable payoff coalitional games. We show that the optimum cooperation strategy, which involves the acquisition, deployment, and allocation of the channels and base stations (to customers), can be computed as the solution of a concave or an integer optimization. We next show that the grand coalition is stable in many different settings, i.e., if all providers cooperate, there is always an operating point that maximizes the providers' aggregate payoff, while offering each a share that removes any incentive to split from the coalition. The optimal cooperation strategy and the stabilizing payoff shares can be obtained in polynomial time by respectively solving the primals and the duals of the above optimizations, using distributed computations and limited exchange of confidential information among the providers. Numerical evaluations reveal that cooperation substantially enhances individual providers' payoffs under the optimal cooperation strategy and several different payoff sharing rules.
Resumo:
An integratedm odel is developed,b asedo n seasonailn puts of reservoiri nflow and rainfall in the irrigated area, to determine the optimal reservoir release policies and irrigation allocationst o multiple crops.T he model is conceptuallym ade up of two modules. Module 1 is an intraseasonal allocation model to maximize the sum of relative yieldso f all crops,f or a givens tateo f the systemu, singl inear programming(L P). The module takes into account reservoir storage continuity, soil moisture balance, and crop root growthw ith time. Module 2 is a seasonaal llocationm odel to derive the steadys tate reservoiro peratingp olicyu sings tochastidc ynamicp rogramming(S DP). Reservoir storage, seasonal inflow, and seasonal rainfall are the state variables in the SDP. The objective in SDP is to maximize the expected sum of relative yields of all crops in a year.The resultso f module 1 and the transitionp robabilitieso f seasonailn flow and rainfall form the input for module 2. The use of seasonailn puts coupledw ith the LP-SDP solution strategy in the present formulation facilitates in relaxing the limitations of an earlier study,w hile affectinga dditionali mprovementsT. he model is applied to an existing reservoir in Karnataka State, India.
Resumo:
Femtocells are a new concept which improves the coverage and capacity of a cellular system. We consider the problem of channel allocation and power control to different users within a Femtocell. Knowing the channels available, the channel states and the rate requirements of different users the Femtocell base station (FBS), allocates the channels to different users to satisfy their requirements. Also, the Femtocell should use minimal power so as to cause least interference to its neighboring Femtocells and outside users. We develop efficient, low complexity algorithms which can be used online by the Femtocell. The users may want to transmit data or voice. We compare our algorithms with the optimal solutions.
Resumo:
The problem of cooperative beamforming for maximizing the achievable data rate of an energy constrained two-hop amplify-and-forward (AF) network is considered. Assuming perfect channel state information (CSI) of all the nodes, we evaluate the optimal scaling factor for the relay nodes. Along with individual power constraint on each of the relay nodes, we consider a weighted sum power constraint. The proposed iterative algorithm initially solves a set of relaxed problems with weighted sum power constraint and then updates the solution to accommodate individual constraints. These relaxed problems in turn are solved using a sequence of Quadratic Eigenvalue Problems (QEP). The key contribution of this letter is the generalization of cooperative beamforming to incorporate both the individual and weighted sum constraint. Furthermore, we have proposed a novel algorithm based on Quadratic Eigenvalue Problem (QEP) and discussed its convergence.
Resumo:
We consider near-optimal policies for a single user transmitting on a wireless channel which minimize average queue length under average power constraint. The power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. Later, we also extend these results to the multiuser case. We show that our policies can be used in a system with energy harvesting sources at the transmitter. Next we consider data users which require minimum rate guarantees. Finally we consider the system which has both data and real time users. Our policies have low computational complexity, closed form expression for mean delays and require only the mean arrival rate with no queue length information.
Resumo:
We examine the effect of subdividing the potential barrier along the reaction coordinate on Kramers' escape rate for a model potential. Using the known supersymmetric potential approach, we show the existence of an optimal number of subdivisions that maximizes the rate.
Resumo:
Cum ./LSTA_A_8828879_O_XML_IMAGES/LSTA_A_8828879_O_ILM0001.gif rule [Singh (1975)] has been suggested in the literature for finding approximately optimum strata boundaries for proportional allocation, when the stratification is done on the study variable. This paper shows that for the class of density functions arising from the Wang and Aggarwal (1984) representation of the Lorenz Curve (or DBV curves in case of inventory theory), the cum ./LSTA_A_8828879_O_XML_IMAGES/LSTA_A_8828879_O_ILM0002.gif rule in place of giving approximately optimum strata boundaries, yields exactly optimum boundaries. It is also shown that the conjecture of Mahalanobis (1952) “. . .an optimum or nearly optimum solutions will be obtained when the expected contribution of each stratum to the total aggregate value of Y is made equal for all strata” yields exactly optimum strata boundaries for the case considered in the paper.
Resumo:
The problem of optimal scheduling of the generation of a hydro-thermal power system that is faced with a shortage of energy is studied. The deterministic version of the problem is first analyzed, and the results are then extended to cases where the loads and the hydro inflows are random variables.
Resumo:
This paper deals with the optimal load flow problem in a fixed-head hydrothermal electric power system. Equality constraints on the volume of water available for active power generation at the hydro plants as well as inequality constraints on the reactive power generation at the voltage controlled buses are imposed. Conditions for optimal load flow are derived and a successive approximation algorithm for solving the optimal generation schedule is developed. Computer implementation of the algorithm is discussed, and the results obtained from the computer solution of test systems are presented.
Resumo:
Common mode voltage (CMV) variations in PWM inverter-fed drives generate unwanted shaft and bearing current resulting in early motor failure. Multilevel inverters reduce this problem to some extent, with higher number of levels. But the complexity of the power circuit increases with an increase in the number of inverter voltage levels. In this paper a five-level inverter structure is proposed for open-end winding induction motor (IM) drives, by cascading only two conventional two-level and three-level inverters, with the elimination of the common mode voltage over the entire modulation range. The DC link power supply requirement is also optimized by means of DC link capacitor voltage balancing, with PWM control., using only inverter switching state redundancies. The proposed power circuit gives a simple power bits structure.
Resumo:
Systems of learning automata have been studied by various researchers to evolve useful strategies for decision making under uncertainity. Considered in this paper are a class of hierarchical systems of learning automata where the system gets responses from its environment at each level of the hierarchy. A classification of such sequential learning tasks based on the complexity of the learning problem is presented. It is shown that none of the existing algorithms can perform in the most general type of hierarchical problem. An algorithm for learning the globally optimal path in this general setting is presented, and its convergence is established. This algorithm needs information transfer from the lower levels to the higher levels. Using the methodology of estimator algorithms, this model can be generalized to accommodate other kinds of hierarchical learning tasks.
Resumo:
We consider the problem of estimating the optimal parameter trajectory over a finite time interval in a parameterized stochastic differential equation (SDE), and propose a simulation-based algorithm for this purpose. Towards this end, we consider a discretization of the SDE over finite time instants and reformulate the problem as one of finding an optimal parameter at each of these instants. A stochastic approximation algorithm based on the smoothed functional technique is adapted to this setting for finding the optimal parameter trajectory. A proof of convergence of the algorithm is presented and results of numerical experiments over two different settings are shown. The algorithm is seen to exhibit good performance. We also present extensions of our framework to the case of finding optimal parameterized feedback policies for controlled SDE and present numerical results in this scenario as well.
Resumo:
In this paper, we consider the bi-criteria single machine scheduling problem of n jobs with a learning effect. The two objectives considered are the total completion time (TC) and total absolute differences in completion times (TADC). The objective is to find a sequence that performs well with respect to both the objectives: the total completion time and the total absolute differences in completion times. In an earlier study, a method of solving bi-criteria transportation problem is presented. In this paper, we use the methodology of solvin bi-criteria transportation problem, to our bi-criteria single machine scheduling problem with a learning effect, and obtain the set of optimal sequences,. Numerical examples are presented for illustrating the applicability and ease of understanding.
Resumo:
In a letter RauA proposed a new method for designing statefeedback controllers using eigenvalue sensitivity matrices. However, there appears to be a conceptual mistake in the procedure, or else it is unduly restricted in its applicability. In particular the equation — BR~lBTK = A/.I, in which K is a positive-definite symmetric matrix.
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), nonorthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time (ST) code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the orthogonal and the nonorthogonal amplify-and-forward (NAF) protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Moreover our code construction for the OAF protocol incurs less delay. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. The variable-NSDF protocol is shown to improve on the DMT of the best previously known static protocol when the number of relays is greater than two. Also included is a DMT optimal code construction for the NAF protocol.