71 resultados para Optically stimulated luminescence
Resumo:
The frequency response of the dielectric constant (epsilon(r)), the loss tangent (tan delta) and impedance Z of potassium acid phthalate (KAP) single crystals, monitored along the polar axis, exhibit strong resonances in the frequency range 50-200 kHz, depending on the dimensions of the sample. The observed resonance effect, which is strongly dependent on the geometric shape and size of the sample, is attributed to its piezoelectric nature. The resonance peak positions have been monitored as a function of both temperature and uniaxial pressure. The stiffness coefficient (C), computed based on the resonance data, is found to decrease with increasing temperature and increase with increasing pressure. The electro-mechanical coupling coefficient (k), obtained by resonance-anti-resonance method, has also been found to increase with rise in temperature. The epsilon(r) behaviour along the polar axis, as a function of temperature is consistent with that of k. The preliminary results on the influence, of partial replacement of K+ ions in the KAP crystal by Cs+ and Li+ ions, on the observed piezoelectric resonance effects are also included.
Resumo:
We study the transient response of a colloidal bead which is released from different heights and allowed to relax in the potential well of an optical trap. Depending on the initial potential energy, the system's time evolution shows dramatically different behaviors. Starting from the short-time reversible to long-time irreversible transition, a stationary reversible state with zero net dissipation can be achieved as the release point energy is decreased. If the system starts with even lower energy, it progressively extracts useful work from thermal noise and exhibits an anomalous irreversibility. In addition, we have verified the Transient Fluctuation Theorem and the Integrated Transient Fluctuation Theorem even for the non-ergodic descriptions of our system. Copyright (C) EPLA, 2011
Resumo:
We investigated the role of cAMP/cGMP, protein kinases and intracellular calcium ( [Ca2+](i)) in pentoxifylline-stimulated hamster sperm capacitation and the acrosome reaction (AR) in vitro. Treatment with pentoxifylline [0.45 mM) initially increased sperm cAMP values 2.8-fold, compared with untreated controls (396 +/- 9.2 versus 141 +/- 6.0 fmoles/10(6) spermatozoa; mean +/- SEM, n = 6) after 15 min, although by 3 h, cAMP values were similar (503-531 fmoles/10(6) spermatozoal, cGMP values (similar to 27 fmoles/10(6) spermatozoa) were the same in treated and control spermatozoa. Both sperm capacitation and the AR, determined from the absence of an acrosomal cap, were stimulated by pentoxifylline; these were almost completely inhibited by a Cl-/HCO(3)(-)antiporter inhibitor (4,4-diisothiocyanato-stilbene-2,2 disulphonic acid; 1 mM) defined from the degree of sperm motility and by a protein kinase A inhibitor (H89; 10 mu M) A protein kinase G inhibitor (staurosporine, 1 nM) did not affect pentoxifylline-stimulated capacitation but inhibited the AR by 50%. A protein tyrosine kinase inhibitor (tyrphostin A-47, 0.1 mM) had no effect on either pentoxifylline-stimulated capacitation or AR, A phospholipase A(2) inhibitor (aristolochic acid, 0.4 mM) markedly inhibited the pentoxifylline-stimulated AR but not capacitation. When intracellular sperm calcium [Ca2+](i) was measured using fura-2-AM, there was an early rise 271 nM at 0.5 hi in pentoxifylline(-treated spermatozoa; this appeared to be due to intracellular mobilization rather than to uptake. In the absence of extracellular Ca2+, sperm motility was maintained in the presence of pentoxifylline, but capacitation did not occur; spermatozoa exhibited a low level of hyperactivated motility and had a poor rate of AR(20.5 +/- 2.3%). These results suggest that: (i) the pentoxifylline-stimulated early onset of sperm capacitation may be mediated by an early rise in cAMP and [Ca2+/-](i) and involves protein kinase A activity; and (ii) pentoxifylline-stimulated AR may require phospholipase A;A(2) and protein kinase C activity.
Resumo:
We report one-pot hydrothermal synthesis of nearly mono-disperse 3-mercaptopropionic acid capped water-soluble cadmium telluride (CdTe) quantum dots (QDs) using an air stable Te source. The optical and electrical characteristics were also studied here. It was shown that the hydrothermal synthesis could be tuned to synthesize nano structures of uniform size close to nanometers. The emissions of the CdTe QDs thus synthesized were in the range of 500-700 nm by varying the duration of synthesis. The full width at half maximum (FWHM) of the emission peaks is relatively narrow (40-90 nm), which indicates a nearly uniform distribution of QD size. The structural and optical properties of the QDs were characterized by transmission electron microscopy (TEM), photoluminescence (PL) and Ultraviolet-visible (UV-Vis) spectroscopy. The photoluminescence quenching of CdTe QDs in the presence of L-cysteine and DNA confirms its biocompatibility and its utility for biosensing applications. The room temperature current-voltage characteristics of QD film on ITO coated glass substrate show an electrically induced switching between states with high and low conductivities. The phenomenon is explained on the basis of charge confinement in quantum dots. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The stimulated emission cross section σp for the 1060 nm transition of Nd3+ in lead borate and bismuth borate glasses has been determined from fluorescence measurements. The compositional dependence of σp, which has been evaluated using radiative transition probability, refractive index of the host glass, effective fluorescence linewidth, and position of the band, with PbO/Bi2O3 content is investigated. The σp values of the 1060 nm band of Nd3+ for lead borate and bismuth borate glasses are found to be in the range 2.6–5.7×10−20 cm2 at 298 K and 3.0–6.3×10−20 cm2 at 4.2 K. The σp values are comparatively large suggesting the possible utilization of these materials in laser applications.
Resumo:
In this letter, we investigate the circular differential deflection of a light beam refracted at the interface of an optically active medium. We show that the difference between the angles of deviation of the two circularly polarized components of the transmitted beam is enhanced manyfold near total internal reflection, which suggests a simple way of increasing the limit of detection of chiro-optical measurements. (C) 2012 Optical Society of America
Resumo:
Chemically synthesized ``pro-sensitizers'' release the sensitizer in the presence of lipase or beta-glucosidase, triggering a significant luminescence response from a lanthanide based hydrogel.
Resumo:
Nano-ceramic phosphor CaSiO 3 doped with Pb and Mn was synthesized by the low temperature solution combustion method. The materials were characterized by Powder X-Ray Diffraction (XRD), Thermo-gravimetric and Differential Thermal Analysis (TG-DTA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The Electron Paramagnetic Resonance (EPR) spectrum of the investigated sample exhibits a broad resonance signal centered at g=1.994. The number of spins participating in resonance (N) and its paramagnetic susceptibility (�) have been evaluated. Photoluminescence of doped CaSiO 3 was investigated when excited by UV radiation of 256 nm. The phosphor exhibits an emission peak at 353 nm in the UV range due to Pb 2+. Further, a broad emission peak in the visible range 550-625 nm can be attributed to 4T 1� 6A 1 transition of Mn 2+ ions. The investigation reveals that doping perovskite nano-ceramics with transition metal ions leads to excellent phosphor materials for potential applications. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Red light emitting cubic Y1.95Eu0.05O3 nanophosphors have been synthesized by a low temperature solution combustion method using ethylene diamine tetra acetic acid (EDTA) as fuel. The systematic studies on the effect of calcination temperature on its structural, photoluminescence (PL), and thermoluminescence (TL) properties were reported. The crystallinity of the samples increases, and the strain is reduced with increasing calcination temperature. SEM micrographs reveal that samples lose their porous nature with an increase in calcination temperature. PL spectra show that the intensity of the red emission (611 nm) is highly dependent on the calcination temperature and is found to be 10 times higher when compared to as-formed samples. The optical band gap (E-g) was found to reduce with an increase of calcination temperature due to reduction of surface defects. The thermoluminescence (TL) intensity was found to be much enhanced in the 1000 degrees C calcined sample. The increase of PL and TL intensity with calcination temperature is attributed to the decrease of the nonradiative recombination probability, which occurs through the elimination of quenching defects. The trap parameters (E, b, s) were estimated from Chen's glow peak shape method and are discussed in detail for their possible usage in dosimetry.
Resumo:
In solid-state mechanochromic luminescence (ML) materials, it remains a challenge to establish the origin of fluorescence color changes upon mechanical action and to determine why only some fluorophores exhibit ML behavior. The study of mechanical properties by nanoindentation, followed by ML experiments on green- and cyan-emitting polymorphs of difluoroboron avobenzone reveals that upon smearing, the plastically deformable cyan form shows a prominent color change to yellow, while in the harder green form the redshifted emission is barely detectable. Crystal structure analysis reveals the presence of slip planes in the softer cyan form that can facilitate the formation of recoverable and low energy defects in the structure. Hence, the cyan form exhibits prominent and reversible ML behavior. This suggests a potential design strategy for efficient ML materials.
Resumo:
In a previous study of the properties of red blood cells (RBC) trapped in an optical tweezers trap, an increase in the spectrum of Brownian fluctuations for RBCs from a Plasmodium falciparum culture (due to increased rigidity) compared with normal RBCs was measured. A bystander effect was observed, whereby RBCs actually hosting the parasite had an effect on the physical properties of remaining non-hosting RBCs. The distribution of corner frequency (f(c)) in the power spectrum of single RBCs held in an optical tweezers trap was studied. Two tests were done to confirm the bystander effect. In the first, RBCs from an infected culture were separated into hosting and non-hosting RBCs. In the second, all RBCs were removed from the infected culture, and normal RBCs were incubated in the spent medium. The trapping environment was the same for all measurements so only changes in the properties of RBCs were measured. In the first experiment, a similar and statistically significant increase was measured both for hosting and non-hosting RBCs. In the second experiment, normal RBCs incubated in spent medium started to become rigid after a few hours and showed complete changes (comparable with RBCs from the infected culture) after 24 h. These experiments provide direct evidence of medium-induced changes in the properties of RBCs in an infected culture, regardless of whether the RBCs actually host the parasite.
IGF-1 stimulated upregulation of cyclin D1 is mediated via STAT5 signaling pathway in neuronal cells
Resumo:
Signal Transducer and Activator of Transcription (STATs) regulate various target genes such as cyclin D1, MYC, and BCL2 in nonneuronal cells which contribute towards progression as well as prevention of apoptosis and are involved in differentiation and cell survival. However, in neuronal cells, the role of STATs in the activation and regulation of these target genes and their signaling pathways are still not well established. In this study, a robust cyclin D1 expression was observed following IGF-1 stimulation in SY5Y cells as well as neurospheres. JAK/STAT pathway was shown to be involved in this upregulation. A detailed promoter analysis revealed that the specific STAT involved was STAT5, which acted as a positive regulatory element for cyclin D1 expression. Overexpression studies confirmed increase in cyclin D1 expression in response to STAT5a and STAT5b constructs when compared to dominant-negative STAT5. siRNA targeting STAT5, diminished the cyclin D1 expression, further confirming that STAT5 specifically regulated cyclin D1 in neuronal cells. Together, these findings shed new light on the mechanism of IGF-1 mediated upregulation of cyclin D1 expression in neural cell lines as well as in neural stem cells via the JAK/STAT5 signaling cascade.
Resumo:
Stimulated optical signals obtained by subjecting the system to a narrow band and a broadband pulse show both gain and loss Raman features at the red and blue side of the narrow beam, respectively. Recently observed temperature-dependent asymmetry in these features Mallick et al., J. Raman Spectrosc. 42, 1883 (2011); Dang et al., Phys. Rev. Lett. 107, 043001 (2011)] has been attributed to the Stokes and anti-Stokes components of the third-order susceptibility, chi((3)). By treating the setup as a steady state of an open system coupled to four quantum radiation field modes, we show that Stokes and anti-Stokes processes contribute to both the loss and gain resonances. chi((3)) predicts loss and gain signals with equal intensity for electronically off-resonant excitation. Some asymmetry may exist for resonant excitation. However, this is unrelated to the Stokes vs anti-Stokes processes. Any observed temperature-dependent asymmetry must thus originate from effects lying outside the chi((3)) regime.
Resumo:
Effect of stress and interface defects on photo luminescence property of a silicon nano-crystal (Si-nc) embedded in amorphous silicon dioxide (a-SiO2) are studied in this paper using a self-consistent quantum-continuum based modeling framework. Si-ncs or quantum dots show photoluminescence at room temperature. Whether its origin is due to Si-nc/a-SiO2 interface defects or quantum confinement of carriers in Si-nc is still an outstanding question. Earlier reports have shown that stresses greater than 12 GPa change the indirect energy band gap structure of bulk Si to a direct energy band gap structure. Such stresses are observed very often in nanostructures and these stresses influence the carrier confinement energy significantly. Hence, it is important to determine the effect of stress in addition to the structure of interface defects on photoluminescence property of Si-nc. In the present work, first a Si-nc embedded in a-SiO2 is constructed using molecular dynamics simulation framework considering the actual conditions they are grown so that the interface and residual stress in the structure evolves naturally during formation. We observe that the structure thus created has an interface of about 1 nm thick consisting of 41.95% of defective states mostly Sin+ (n = 0 to 3) coordination states. Further, both the Si-nc core and the embedding matrix are observed to be under a compressive strain. This residual strain field is applied in an effective mass k.p Hamiltonian formulation to determine the energy states of the carriers. The photo luminescence property computed based on the carrier confinement energy and interface energy states associated with defects will be analysed in details in the paper.