50 resultados para Online Dictionary
Resumo:
Research in the field of recognizing unlimited vocabulary, online handwritten Indic words is still in its infancy. Most of the focus so far has been in the area of isolated character recognition. In the context of lexicon-free recognition of words, one of the primary issues to be addressed is that of segmentation. As a preliminary attempt, this paper proposes a novel script-independent, lexicon-free method for segmenting online handwritten words to their constituent symbols. Feedback strategies, inspired from neuroscience studies, are proposed for improving the segmentation. The segmentation strategy has been tested on an exhaustive set of 10000 Tamil words collected from a large number of writers. The results show that better segmentation improves the overall recognition performance of the handwriting system.
Resumo:
N-gram language models and lexicon-based word-recognition are popular methods in the literature to improve recognition accuracies of online and offline handwritten data. However, there are very few works that deal with application of these techniques on online Tamil handwritten data. In this paper, we explore methods of developing symbol-level language models and a lexicon from a large Tamil text corpus and their application to improving symbol and word recognition accuracies. On a test database of around 2000 words, we find that bigram language models improve symbol (3%) and word recognition (8%) accuracies and while lexicon methods offer much greater improvements (30%) in terms of word recognition, there is a large dependency on choosing the right lexicon. For comparison to lexicon and language model based methods, we have also explored re-evaluation techniques which involve the use of expert classifiers to improve symbol and word recognition accuracies.
Resumo:
When document corpus is very large, we often need to reduce the number of features. But it is not possible to apply conventional Non-negative Matrix Factorization(NMF) on billion by million matrix as the matrix may not fit in memory. Here we present novel Online NMF algorithm. Using Online NMF, we reduced original high-dimensional space to low-dimensional space. Then we cluster all the documents in reduced dimension using k-means algorithm. We experimentally show that by processing small subsets of documents we will be able to achieve good performance. The method proposed outperforms existing algorithms.
Resumo:
We consider the problem of finding the best features for value function approximation in reinforcement learning and develop an online algorithm to optimize the mean square Bellman error objective. For any given feature value, our algorithm performs gradient search in the parameter space via a residual gradient scheme and, on a slower timescale, also performs gradient search in the Grassman manifold of features. We present a proof of convergence of our algorithm. We show empirical results using our algorithm as well as a similar algorithm that uses temporal difference learning in place of the residual gradient scheme for the faster timescale updates.
Resumo:
A nearly constant switching frequency current hysteresis controller for a 2-level inverter fed induction motor drive is proposed in this paper: The salient features of this controller are fast dynamics for the current, inherent protection against overloads and less switching frequency variation. The large variation of switching frequency as in the conventional hysteresis controller is avoided by defining a current-error boundary which is obtained from the current-error trajectory of the standard space vector PWM. The current-error boundary is computed at every sampling interval based on the induction machine parameters and from the estimated fundamental stator voltage. The stator currents are always monitored and when the current-error exceeds the boundary, voltage space vector is switched to reduce the current-error. The proposed boundary computation algorithm is applicable in linear and over-modulation region and it is simple to implement in any standard digital signal processor: Detailed experimental verification is done using a 7.5 kW induction motor and the results are given to show the performance of the drive at various operating conditions and validate the proposed advantages.
Resumo:
A space vector-based hysteresis current controller for any general n-level three phase inverter fed induction motor drive is proposed in this study. It offers fast dynamics, inherent overload protection and low harmonic distortion for the phase voltages and currents. The controller performs online current error boundary calculations and a nearly constant switching frequency is obtained throughout the linear modulation range. The proposed scheme uses only the adjacent voltage vectors of the present sector, similar to space vector pulse-width modulation and exhibits fast dynamic behaviour under different transient conditions. The steps involved in the boundary calculation include the estimation of phase voltages from the current ripple, computation of switching time and voltage error vectors. Experimental results are given to show the performance of the drive at various speeds, effect of sudden change of the load, acceleration, speed reversal and validate the proposed advantages.
Resumo:
In this article, we aim at reducing the error rate of the online Tamil symbol recognition system by employing multiple experts to reevaluate certain decisions of the primary support vector machine classifier. Motivated by the relatively high percentage of occurrence of base consonants in the script, a reevaluation technique has been proposed to correct any ambiguities arising in the base consonants. Secondly, a dynamic time-warping method is proposed to automatically extract the discriminative regions for each set of confused characters. Class-specific features derived from these regions aid in reducing the degree of confusion. Thirdly, statistics of specific features are proposed for resolving any confusions in vowel modifiers. The reevaluation approaches are tested on two databases (a) the isolated Tamil symbols in the IWFHR test set, and (b) the symbols segmented from a set of 10,000 Tamil words. The recognition rate of the isolated test symbols of the IWFHR database improves by 1.9 %. For the word database, the incorporation of the reevaluation step improves the symbol recognition rate by 3.5 % (from 88.4 to 91.9 %). This, in turn, boosts the word recognition rate by 11.9 % (from 65.0 to 76.9 %). The reduction in the word error rate has been achieved using a generic approach, without the incorporation of language models.
Resumo:
To combine the advantages of both stability and optimality-based designs, a single network adaptive critic (SNAC) aided nonlinear dynamic inversion approach is presented in this paper. Here, the gains of a dynamic inversion controller are selected in such a way that the resulting controller behaves very close to a pre-synthesized SNAC controller in the output regulation sense. Because SNAC is based on optimal control theory, it makes the dynamic inversion controller operate nearly optimal. More important, it retains the two major benefits of dynamic inversion, namely (i) a closed-form expression of the controller and (ii) easy scalability to command tracking applications without knowing the reference commands a priori. An extended architecture is also presented in this paper that adapts online to system modeling and inversion errors, as well as reduced control effectiveness, thereby leading to enhanced robustness. The strengths of this hybrid method of applying SNAC to optimize an nonlinear dynamic inversion controller is demonstrated by considering a benchmark problem in robotics, that is, a two-link robotic manipulator system. Copyright (C) 2013 John Wiley & Sons, Ltd.
Resumo:
Regions in video streams attracting human interest contribute significantly to human understanding of the video. Being able to predict salient and informative Regions of Interest (ROIs) through a sequence of eye movements is a challenging problem. Applications such as content-aware retargeting of videos to different aspect ratios while preserving informative regions and smart insertion of dialog (closed-caption text) into the video stream can significantly be improved using the predicted ROIs. We propose an interactive human-in-the-loop framework to model eye movements and predict visual saliency into yet-unseen frames. Eye tracking and video content are used to model visual attention in a manner that accounts for important eye-gaze characteristics such as temporal discontinuities due to sudden eye movements, noise, and behavioral artifacts. A novel statistical-and algorithm-based method gaze buffering is proposed for eye-gaze analysis and its fusion with content-based features. Our robust saliency prediction is instantiated for two challenging and exciting applications. The first application alters video aspect ratios on-the-fly using content-aware video retargeting, thus making them suitable for a variety of display sizes. The second application dynamically localizes active speakers and places dialog captions on-the-fly in the video stream. Our method ensures that dialogs are faithful to active speaker locations and do not interfere with salient content in the video stream. Our framework naturally accommodates personalisation of the application to suit biases and preferences of individual users.
Resumo:
To perform super resolution of low resolution images, state-of-the-art methods are based on learning a pair of lowresolution and high-resolution dictionaries from multiple images. These trained dictionaries are used to replace patches in lowresolution image with appropriate matching patches from the high-resolution dictionary. In this paper we propose using a single common image as dictionary, in conjunction with approximate nearest neighbour fields (ANNF) to perform super resolution (SR). By using a common source image, we are able to bypass the learning phase and also able to reduce the dictionary from a collection of hundreds of images to a single image. By adapting recent developments in ANNF computation, to suit super-resolution, we are able to perform much faster and accurate SR than existing techniques. To establish this claim, we compare the proposed algorithm against various state-of-the-art algorithms, and show that we are able to achieve b etter and faster reconstruction without any training.
Resumo:
In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.
Resumo:
In this work, we describe a system, which recognises open vocabulary, isolated, online handwritten Tamil words and extend it to recognize a paragraph of writing. We explain in detail each step involved in the process: segmentation, preprocessing, feature extraction, classification and bigram-based post-processing. On our database of 45,000 handwritten words obtained through tablet PC, we have obtained symbol level accuracy of 78.5% and 85.3% without and with the usage of post-processing using symbol level language models, respectively. Word level accuracies for the same are 40.1% and 59.6%. A line and word level segmentation strategy is proposed, which gives promising results of 100% line segmentation and 98.1% word segmentation accuracies on our initial trials of 40 handwritten paragraphs. The two modules have been combined to obtain a full-fledged page recognition system for online handwritten Tamil data. To the knowledge of the authors, this is the first ever attempt on recognition of open vocabulary, online handwritten paragraphs in any Indian language.
Resumo:
Oversmoothing of speech parameter trajectories is one of the causes for quality degradation of HMM-based speech synthesis. Various methods have been proposed to overcome this effect, the most recent ones being global variance (GV) and modulation-spectrum-based post-filter (MSPF). However, there is still a significant quality gap between natural and synthesized speech. In this paper, we propose a two-fold post-filtering technique to alleviate to a certain extent the oversmoothing of spectral and excitation parameter trajectories of HMM-based speech synthesis. For the spectral parameters, we propose a sparse coding-based post-filter to match the trajectories of synthetic speech to that of natural speech, and for the excitation trajectory, we introduce a perceptually motivated post-filter. Experimental evaluations show quality improvement compared with existing methods.
Resumo:
Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.