40 resultados para Obstacle avoidance
Resumo:
A rain forest dusk chorus consists of a large number of individuals of acoustically communicating species signaling at the same time. How different species achieve effective intra-specific communication in this complex and noisy acoustic environment is not well understood. In this study we examined acoustic masking interference in an assemblage of rain forest crickets and katydids. We used signal structures and spacing of signalers to estimate temporal, spectral and active space overlap between species. We then examined these overlaps for evidence of strategies of masking avoidance in the assemblage: we asked whether species whose signals have high temporal or spectral overlap avoid calling together. Whereas we found evidence that species with high temporal overlap may avoid calling together, there was no relation between spectral overlap and calling activity. There was also no correlation between the spectral and temporal overlaps of the signals of different species. In addition, we found little evidence that species calling in the understorey actively use spacing to minimize acoustic overlap. Increasing call intensity and tuning receivers however emerged as powerful strategies to minimize acoustic overlap. Effective acoustic overlaps were on average close to zero for most individuals in natural, multispecies choruses, even in the absence of behavioral avoidance mechanisms such as inhibition of calling or active spacing. Thus, call temporal structure, intensity and frequency together provide sufficient parameter space for several species to call together yet communicate effectively with little interference in the apparent cacophony of a rain forest dusk chorus.
Resumo:
The stable co-existence of individuals of different genotypes and reproductive division of labour within heterogeneous groups are issues of fundamental interest from the viewpoint of evolution. Cellular slime moulds are convenient organisms in which to address both issues. Strains of a species co-occur, as do different species; social groups are often genetically heterogeneous. Intra- and interspecies 1:1 mixes of wild isolates of Dictyostelium giganteum and D.purpureum form chimaeric aggregates, following which they segregate to varying extents. Intraspecies aggregates develop in concert and give rise to chimaeric fruiting bodies that usually contain more spores (reproductives) of one component than the other. Reproductive skew and variance in the proportion of reproductives are positively correlated. Interspecies aggregates exhibit almost complete sorting; most spores in a fruiting body come from a single species. Between strains, somatic compatibility correlates weakly with sexual compatibility. It is highest within clones, lower between strains of a species and lowest between strains of different species. Trade-offs among fitness-related traits (between compatible strains), sorting out (between incompatible strains) and avoidance (between species) appear to lie behind coexistence.
Resumo:
We study the dynamics of a single vortex and a pair of vortices in quasi two-dimensional Bose-Einstein condensates at finite temperatures. To this end, we use the stochastic Gross-Pitaevskii equation, which is the Langevin equation for the Bose-Einstein condensate. For a pair of vortices, we study the dynamics of both the vortex-vortex and vortex-antivortex pairs, which are generated by rotating the trap and moving the Gaussian obstacle potential, respectively. Due to thermal fluctuations, the constituent vortices are not symmetrically generated with respect to each other at finite temperatures. This initial asymmetry coupled with the presence of random thermal fluctuations in the system can lead to different decay rates for the component vortices of the pair, especially in the case of two corotating vortices.
Resumo:
We report the performance and photophysics of a low band-gap diketopyrrolopyrrole-based copolymer used in bulk heterojunction devices in combination with PC71BM. We show that the short lifetime of photogenerated excitons in the polymer constitutes an obstacle towards device efficiency by limiting the diffusion range of the exciton to the donor-acceptor heterojunction. We employ ultrafast transient-probe and fluorescence spectroscopy techniques to examine the excited state loss channels inside the devices. We use the high boiling point solvent additive 1,8-diiodooctane (DIO) to study the photoexcited state losses in different blend morphologies. The solvent additive acts as a compatibiliser between the donor and the acceptor material and leads to smaller domain sizes, higher charge formation yields and increased device efficiency.
Resumo:
Early diagnosis of disease is important, because therapeutic intervention is most successful before it spread to the subject. The best health screenings method could be the blood test because the blood contains thousands of bio-molecules coming as by-products from the diseased part of the organism and would be non-invasive approach. The major limitation of this approach is the very low concentrations of the analytes need to be detected. Raman spectroscopy has been proven as one of the cutting edge technique applied in the field of histology, cytology and clinical chemistry. The primary obstacle of Raman spectroscopy is the low signal intensities. One of the promising approaches to overcome that is surface enhanced Raman spectroscopy (SERS) which has opened novel opportunities for chemical and biomedical analytics. Albumin is one of the most abundant proteins in blood, produced by liver. The state of albumin in serum determines the health of the liver and kidney. Serum albumin helps to transport many small molecules such as fatty acids, bilirubin, calcium, drugs through the blood. In this study, SERS is being used for the quantification and to understand of binding mechanism serum albumin.
Resumo:
Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble-Noble-Panfilov (TNNP) ionic model for human cardiac tissue. We show that, in a large range of parameters that account for the conductance of major inward and outward ionic currents of the model fast inward Na+ current (INa), L-type slow inward Ca2+ current (I-CaL), slow delayed-rectifier current (I-Ks), rapid delayed-rectifier current (I-Kr), inward rectifier K+ current (I-K1)], the critical period necessary for spiral formation is close to the period of a spiral wave rotating in the same tissue. We also show that there is a minimal size of the obstacle for which formation of spirals is possible; this size is similar to 2.5 cm and decreases with a decrease in the excitability of cardiac tissue. We show that other factors, such as the obstacle thickness and direction of wave propagation in relation to the obstacle, are of secondary importance and affect the conditions for spiral wave initiation only slightly. We also perform studies for obstacle shapes derived from experimental measurements of infarction scars and show that the formation of spiral waves there is facilitated by tissue remodeling around it. Overall, we demonstrate that the formation of reentrant sources around inexcitable obstacles is a potential mechanism for the onset of cardiac arrhythmias in the presence of a fast heart rate.
Resumo:
Many theories and mechanisms have been proposed to explain the phenomenon of clear-air turbulence (CAT), and some of them have been successful in predicting light, moderate and, in some cases, severe turbulence. It is only recently that skill in the forecasting of the severe form of CAT, which could lead to injuries to passengers and damage to aircraft, has improved. Recent observations and simulations suggest that some severe to extreme turbulence could be caused by horizontal vortex tubes resulting from secondary instabilities of regions of high shear in the atmosphere. We have conducted direct numerical simulations to understand the scale relationship between primary structures (larger-scale structures related to one of the causes mentioned above) and secondary structures (smaller-sized, shear structures of the size of aircraft). From shear layer simulations, we find that the ratio of sizes of primary and secondary vortices is of the right order to generate aircraft-scale vortex tubes from typical atmospheric shear layers. We have also conducted simulations with a mesoscale atmospheric model, to understand possible causes of turbulence experienced by a flight off the west coast of India. Our simulations show the occurrence of primary flow structures related to synoptic conditions around the time of the incident. The evidence presented for this mechanism also has implications for possible methods of detection and avoidance of severe CAT.
Resumo:
This paper describes a university based system relevant to doctoral students who have problems with themselves, their peers and research supervisors. Doctoral students have various challenges to solve and these challenges contribute to delays in their thesis submission. This tool aims at helping them think through their problem in a pre-counseling stage. The tool uses narratives and hypothetical stories to walk a doctoral student through options of responses he or she can make given the situation in the narrative. Narratives were developed after a preliminary survey (n=57) of doctoral students. The survey indicated that problems they experienced were: busy supervisors, negative competition from peers and laziness with self. The narrative scenarios in the tool prompt self-reflection and provide for options to chose from leading to the next scenario that will ensue. The different stages of the stimulus-response cycles are designed based on Thomas-Kilmann conflict resolution techniques (collaboration and avoidance). Each stimulus-response cycle has a score attached that reflects the student's ability to judge a collaborative approach. At the end of all the stages a scorecard is generated indicating either a progressive or regressive outcome of thesis submission.
Resumo:
We solve the two-dimensional, planar Navier-Stokes equations to simulate a laminar, standing hydraulic jump using a Volume-of-Fluid method. The geometry downstream of the jump has been designed to be similar to experimental conditions by including a pit at the edge of the platform over which liquid film flows. We obtain jumps with and without separation. Increasing the inlet Froude number pushes the jump downstream and makes the slope of the jump weaker, consistent with experimental observations of circular jumps, and decreasing the Reynolds number brings the jump upstream while making it steeper. We study the effect of the length of the domain and that of a downstream obstacle on the structure and location of the jump. The transient flow which leads to a final steady jump is described for the first time to our knowledge. In the moderate Reynolds number regime, we obtain steady undular jumps with a separated bubble underneath the first few undulations. Interestingly, surface tension leads to shortening of wavelength of these undulations. We show that the undulations can be explained using the inviscid theory of Benjamin and Lighthill (Proc. R. Soc. London, Ser. A, 1954). We hope this new finding will motivate experimental verification.
Resumo:
Using in situ, high-speed imaging of a hard wedge sliding against pure aluminum, and image analysis by particle image velocimetry, the deformation field in sliding is mapped at high resolution. This model system is representative of asperity contacts on engineered surfaces and die-workpiece contacts in deformation and machining processes. It is shown that large, uniform plastic strains of 1-5 can be imposed at the Al surface, up to depths of 500 mu m, under suitable sliding conditions. The spatial strain and strain rate distributions are significantly influenced by the initial deformation state of the Al, e.g., extent of work hardening, and sliding incidence angle. Uniform straining occurs only under conditions of steady laminar flow in the metal. Large pre-strains and higher sliding angles promote breakdown in laminar flow due to surface fold formation or flow localization in the form of shear bands, thus imposing limits on uniform straining by sliding. Avoidance of unsteady sliding conditions, and selection of parameters like sliding angle, thus provides a way to control the deformation field. Key characteristics of the sliding deformation such as strain and strain rate, laminar flow, folding and prow formation are well predicted by finite element simulation. The deformation field provides a quantitative basis for interpreting wear particle formation. Implications for engineering functionally graded surfaces, sliding wear and ductile failure in metals are discussed.