356 resultados para Null-Plane Gauge Conditions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the recently developed model predictive static programming (MPSP) technique, a nonlinear suboptimal reentry guidance scheme is presented in this paper for a reusable launch vehicle (RLV). Unlike traditional RLV guidance, the problem considered over here is restricted only to pitch plane maneuver of the vehicle, which allows simpler mission planning and vehicle load management. The computationally efficient MPSP technique brings in the philosophy of trajectory optimization into the framework of guidance design, which in turn results in very effective guidance schemes in general. In the problem addressed in this paper, it successfully guides the RLV through the critical reentry phase both by constraining it to the allowable narrow flight corridor as well as by meeting the terminal constraints at the end of the reentry segment. The guidance design is validated by considering possible aerodynamic uncertainties as well as dispersions in the initial conditions. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direct transform technique is applied to the initial and boundary value problem involving diffraction of a cylindrical pulse by a half plane, on which impedance type of boundary conditions must be met by the total field. The solution to the time harmonic incident plane wave is deduced as a particular case of the general time-dependent problem considered here and we avoid the Wiener–Hopf technique which leads to very complicated factorization and which masks the role of the impedance factor Z′ (a small quantity) in the expression for the scattered field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given a classical dynamical theory with second-class constraints, it is sometimes possible to construct another theory with first-class constraints, i.e., a gauge-invariant one, which is physically equivalent to the first theory. We identify some conditions under which this may be done, explaining the general principles and working out several examples. Field theoretic applications include the chiral Schwinger model and the non-linear sigma model. An interesting connection with the work of Faddeev and Shatashvili is pointed out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resonant sound absorbers are used widely as anechoic coatings in underwater applications. In this paper a finite element scheme based on the Galerkin technique is used to analyze the reflection characteristics of the resonant absorber when insonified by a normal incidence plane wave. A waveguide theory coupled with an impedance matching condition in the fluid is used to model the problem. It is shown in this paper that the fluid medium encompassing the absorber can be modeled as an elastic medium with equivalent Lamé constants. Quarter symmetry conditions within the periodic unit cell are exploited. The finite element results are compared with analytical results, and with results published elsewhere in the literature. It is shown in the process that meshing of the fluid domain can be obviated if the transmission coefficients or reflection coefficients only are desired as is often the case. Finally, some design curves for thin resonant absorbers with water closure are presented in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hard roller under normal load is driven by the flat surface of a soft disc. Corrugations are generated on the disc when certain surface morphological, load, speed and mechanical property-oriented conditions are met. The evolutionary process of corrugation generation and the preconditions necessary for it are investigated morphologically and mechanically for four disc materials: mild steel, brass, PTFE and PMMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenological theory of hemispherical growth in the context of phase formation with more than one component is presented. The model discusses in a unified manner both instantaneous and progressive nucleation (at the substrate) as well as arbitrary growth rates (e.g. constant and diffusion controlled growth rates). A generalized version of Avrami ansatz (a mean field description) is used to tackle the ''overlap'' aspects arising from the growing multicentres of the many components involved, observing that the nucleation is confined to the substrate plane only. The time evolution of the total extent of macrogrowth as well as those of the individual components are discussed explicitly for the case of two phases. The asymptotic expressions for macrogrowth are derived. Such analysis depicts a saturation limit (i.e. the maximum extent of growth possible) for the slower growing component and its dependence on the kinetic parameters which, in the electrochemical context, can be controlled through potential. The significance of this model in the context of multicomponent alloy deposition and possible future directions for further development are pointed out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium flats were scribed by silicon carbide wedges over ranges of temperatures and applied strains and with lubrication. The response of the material to scribing was noted by recording the coefficient of friction, the surface morphology of track and the subsurface deformation. Additional data were obtained from (1) uniaxial compression of titanium, (2) scribing of oxygen-free high conductivity copper and (3) scribing of aluminium under dry and lubricated conditions to analyse and explain the observed variation in response of titanium to scribing with strain, temperature and lubrication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here a critical assessment of two vortex approaches (both two-dimensional) to the modelling of turbulent mixing layers. In the first approach the flow is represented by point vortices, and in the second it is simulated as the evolution of a continuous vortex sheet composed of short linear elements or ''panels''. The comparison is based on fresh simulations using approximately the same number of elements in either model, paying due attention in both to the boundary conditions far downstream as well as those on the splitter plate from which the mixing layer issues. The comparisons show that, while both models satisfy the well-known invariants of vortex dynamics approximately to the same accuracy, the vortex panel model, although ultimately not convergent, leads to smoother roll-up and values of stresses and moments that are in closer agreement with the experiment, and has a higher computational efficiency for a given degree of convergence on moments. The point vortex model, while faster for a given number of elements, produces an unsatisfactory roll-up which (for the number of elements used) is rendered worse by the incorporation of the Van der Vooren correction for sheet curvature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive boundary conditions at a rigid wall for a granular material comprising rough, inelastic particles. Our analysis is confined to the rapid flow, or granular gas, regime in which grains interact by impulsive collisions. We use the Chapman-Enskog expansion in the kinetic theory of dense gases, extended for inelastic and rough particles, to determine the relevant fluxes to the wall. As in previous studies, we assume that the particles are spheres, and that the wall is corrugated by hemispheres rigidly attached to it. Collisions between the particles and the wall hemispheres are characterized by coefficients of restitution and roughness. We derive boundary conditions for the two limiting cases of nearly smooth and nearly perfectly rough spheres, as a hydrodynamic description of granular gases comprising rough spheres is appropriate only in these limits. The results are illustrated by applying the equations of motion and boundary conditions to the problem of plane Couette flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tendency of granular materials in rapid shear ow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear flow of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate e(+)e(-) -> gamma gamma process within the Seiberg-Witten expanded noncommutative standard model (NCSM) scenario in the presence of anomalous triple gauge boson couplings. This study is done with and without initial beam polarization and we restrict ourselves to leading order effects of noncommutativity i.e. O(Theta). The noncommutative (NC) corrections are sensitive to the electric component ((Theta) over bar (E)) of NC parameter. We include the effects of Earth's rotation in our analysis. This study is done by investigating the effects of noncommutativity on different time averaged cross section observables. We have also defined forward backward asymmetries which will be exclusively sensitive to anomalous couplings. We have looked into the sensitivity of these couplings at future experiments at the International Linear Collider (ILC). This analysis is done under realistic ILC conditions with the center of mass energy (cm.) root s = 800 GeV and integrated luminosity L = 500 fb(-1). The scale of noncommutativity is assumed to be Lambda = 1 TeV. The limits on anomalous couplings of the order 10(-1) from forward backward asymmetries while much stringent limits of the order 10(-2) from total cross section are obtained if no signal beyond SM is seen. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the premise that electronic noise dominates mechanical noise in micromachined accelerometers, we present here a method to enhance the sensitivity and resolution at kHz bandwidth using mechanical amplification. This is achieved by means of a Displacement-amplifying Compliant Mechanism (DaCM) that is appended to the usual sensing element comprising a proof-mass and a suspension. Differential comb-drive arrangement is used for capacitive-sensing. The DaCM is designed to match the stiffness of the suspension so that there is substantial net amplification without compromising the bandwidth. A spring-mass-lever model is used to estimate the lumped parameters of the system. A DaCM-aided accelerometer and another without a DaCM-both occupying the same footprint-are compared to show that the former gives enhanced sensitivity: 8.7 nm/g vs. 1.4 nm/g displacement at the sensing-combs under static conditions. A prototype of the DaCM-aided micromachined acclerometer was fabricated using bulk-micromachining. It was tested at the die-level and then packaged on a printed circuit board with an off-the-shelf integrated chip for measuring change in capacitance. Under dynamic conditions, the measured amplification factor at the output of the DaCM was observed to be about 11 times larger than the displacement of the proof-mass and thus validating the concept of enhancing the sensitivity of accelerometers using mechanical amplifiers. The measured first in-plane natural frequency of the fabricated accelerometer was 6.25 kHz. The packaged accelerometer with the DaCM was measured to have 26.7 mV/g sensitivity at 40 Hz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method to enhance both the sensitivity and bandwidth of in-plane capacitive micromachined accelerometers by using compliant mechanical amplifiers, and thus obviating the compromise between the sensitivity and bandwidth. Here, we compare one of the most sensitive single-axis capacitive accelerometers and another with large resonant frequency reported in the literature with the modified designs that include displacement-amplifying compliant mechanisms (DaCMs) occupying the same footprint and under identical conditions. We show that 62% improvement in sensitivity and 34% improvement in bandwidth in the former, and 27% and 25% in the latter can be achieved. Also presented here is a dual-axis accelerometer that uses a suspension that decouples and amplifies the displacements along the two in-plane orthogonal axes. The new design was microfabricated, packaged, and tested. The device is 25-mu m thick with the interfinger gap as large as 4 m. Despite the simplicity of the microfabrication process, the measured axial sensitivity (static) of about 0.58 V/g for both the axes was achieved with a cross-axis sensitivity of less than +/- 2%. The measured natural frequency along the two in-plane axes was 920 Hz. Displacement amplification of 6.2 was obtained using the DaCMs in the dual-axis accelerometer. 2013-0083]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of the present work is to analyze the influence of external weld flash on the formability of friction stir welding sheets through in-plane plane-strain formability tests. The load-extension behavior and forming limit strains are measured to quantify the formability. The influence of friction stir welding parameters on the height of weld flash was also studied. The base materials used for welding trials are AA6061T6 and AA5052H32 alloy sheets of 2.1-mm thickness. It is observed that the influence of external weld flash on the maximum load and total extension for all the friction stir welding conditions is negligible. The effect of weld flash on the limiting major strain is also insignificant. But the presence of weld flash has changed the limiting minor strain, more toward plane-strain condition, indicating the change in strain-path toward plane-strain. This is due to the strain taken by weld flash, along with the major strain, minor strain, and thickness strain in the friction stir welding sheet plane because of constancy of volume. The formation of weld flash and its height are affected synergistically by the axial force and temperature development during friction stir welding. The higher the axial force and temperature, the higher the flash height.