51 resultados para Nuclar physics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review recent work on the physical properties of model fluid membranes in nonequilibrium situations resembling those encountered in the living cell and contrast their properties with those of the more familiar membranes at thermal equilibrium. We survey models for the effect of (i) active pumps and (ii) active fission–fusion processes encountered in intracellular trafficking on the stability and fluctuations of fluid membranes. Our purpose is twofold: to highlight the exciting nonequilibrium phenomena that arise in biological systems, and to show how some crucial features of living systems, namely dissipative energy uptake and directed motion, can fruitfully be incorporated into physical models of biological interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider how the measurement of top polarization at the Tevatron can be used to characterize and discriminate among different new physics models that have been suggested to explain the anomalous top forward-backward asymmetry reported at the Tevatron. This has the advantage of catching the essence of the parity-violating effect characteristic to the different suggested new physics models. Other observables constructed from these asymmetries are shown to be useful in discriminating between the models, even after taking into account the statistical errors. Finally, we discuss some signals at the 7 TeV LHC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study odd-membered chains of spin-1/2 impurities, with each end connected to its own metallic lead. For antiferromagnetic exchange coupling, universal two-channel Kondo (2CK) physics is shown to arise at low energies. Two overscreening mechanisms are found to occur depending on coupling strength, with distinct signatures in physical properties. For strong interimpurity coupling, a residual chain spin-1/2 moment experiences a renormalized effective coupling to the leads, while in the weak-coupling regime, Kondo coupling is mediated via incipient single-channel Kondo singlet formation. We also investigate models in which the leads are tunnel-coupled to the impurity chain, permitting variable dot filling under applied gate voltages. Effective low-energy models for each regime of filling are derived, and for even fillings where the chain ground state is a spin singlet, an orbital 2CK effect is found to be operative. Provided mirror symmetry is preserved, 2CK physics is shown to be wholly robust to variable dot filling; in particular, the single-particle spectrum at the Fermi level, and hence the low-temperature zero-bias conductance, is always pinned to half-unitarity. We derive a Friedel-Luttinger sum rule and from it show that, in contrast to a Fermi liquid, the Luttinger integral is nonzero and determined solely by the ``excess'' dot charge as controlled by gate voltage. The relevance of the work to real quantum dot devices, where interlead charge-transfer processes fatal to 2CK physics are present, is also discussed. Physical arguments and numerical renormalization-group techniques are used to obtain a detailed understanding of these problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a self-consistent Poisson-Schr¨odinger scheme including the effects of the piezoelectricity, the spontaneous polarization and the charge density on the electronic states and the quasi-Fermi level energy in wurtzite type semiconductor heterojunction and quantum-laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long running multi-physics coupled parallel applications have gained prominence in recent years. The high computational requirements and long durations of simulations of these applications necessitate the use of multiple systems of a Grid for execution. In this paper, we have built an adaptive middleware framework for execution of long running multi-physics coupled applications across multiple batch systems of a Grid. Our framework, apart from coordinating the executions of the component jobs of an application on different batch systems, also automatically resubmits the jobs multiple times to the batch queues to continue and sustain long running executions. As the set of active batch systems available for execution changes, our framework performs migration and rescheduling of components using a robust rescheduling decision algorithm. We have used our framework for improving the application throughput of a foremost long running multi-component application for climate modeling, the Community Climate System Model (CCSM). Our real multi-site experiments with CCSM indicate that Grid executions can lead to improved application throughput for climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a physics-based simplified analytical model of the energy band gap and electron effective mass in a relaxed and strained rectangular 100] silicon nanowires (SiNWs). Our proposed formulation is based on the effective mass approximation for the nondegenerate two-band model and 4 x 4 Luttinger Hamiltonian for energy dispersion relation of conduction band electrons and the valence band heavy and light holes, respectively. Using this, we demonstrate the effect of the uniaxial strain applied along 100]-direction and a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along 001] followed by a uniaxial one along the 100]-direction, respectively, on both the band gap and the transport and subband electron effective masses in SiNW. Our analytical model is in good agreement with the extracted data using the extended-Huckel-method-based numerical simulations over a wide range of device dimensions and applied strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum fields written on noncommutative spacetime (Groenewold-Moyal plane) obey twisted commutation relations. In this paper we show that these twisted commutation relations result in Hanbury-Brown Twiss (HBT) correlations that are distinct from that for ordinary bosonic or fermionic fields, and hence can provide useful information about underlying noncommutative nature of spacetime. The deviation from usual bosonic/fermionic statistics becomes pronounced at high energies, suggesting that a natural place is to look at Ultra High Energy Cosmic Rays (UHECRs). Since the HBT correlations are sensitive only to the statistics of the particles, observations done with UHECRs are capable of providing unambiguous signatures of noncommutativity, with-out any detailed knowledge of the mechanism and source of origin of UHECRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized top-spin analysis proposed some time ago in the context of the standard model and subsequently studied in varying contexts is now applied primarily to the case of e(+)e(-) -> t (tww) over bar with transversely polarized beams. This extends our recent work with new physics couplings of scalar (S) and tensor (T) types. We carry out a comprehensive analysis assuming only the electron beam to be transversely polarized, which is sufficient to probe these interactions, and also eliminates any azimuthal angular dependence due to the standard model or new physics of the vector (V) and axial-vector (A) type interactions. We then consider new physics of the general four-Fermi type of V and A type with both beams transversely polarized and discuss implications with longitudinal polarization as well. The generalized spin bases are all investigated in the presence of either longitudinal or transverse beam polarization to look for appreciable deviation from the SM prediction in case of the new physics. 90% confidence level limits are obtained on the interactions for the generalized spin bases with realistic integrated luminosity. In order to achieve this we present a general discussion based on helicity amplitudes and derive a general transformation matrix that enables us to treat the spin basis. We find that beamline basis combined with transverse polarization provides an excellent window of opportunity both for S, T and V, A new physics, followed by the off-diagonal basis. The helicity basis is shown to be the best in case of longitudinal polarization to look for new physics effects due to V and A. DOI: 10.1103/PhysRevD.86.114019

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address a physics-based closed-form analytical model of flexural phonon-dependent diffusive thermal conductivity (kappa) of suspended rectangular single layer graphene sheet. A quadratic dependence of the out-of-plane phonon frequency, generally called flexural phonons, on the phonon wave vector has been taken into account to analyze the behavior of kappa at lower temperatures. Such a dependence has further been used for the determination of second-order three-phonon Umklapp and isotopic scatterings. We find that these behaviors in our model are best explained through the upper limit of Debye cut-off frequency in the second-order three-phonon Umklapp scattering of the long phonon waves that actually remove the thermal conductivity singularity by contributing a constant scattering rate at low frequencies and note that the out-of-plane Gruneisen parameter for these modes need not be too high. Using this, we clearly demonstrate that. follows a T-1.5 and T-2 law at lower and higher temperatures in the absence of isotopes, respectively. However in their presence, the behavior of kappa sharply deviates from the T-2 law at higher temperatures. The present geometry-dependent model of kappa is found to possess an excellent match with various experimental data over a wide range of temperatures which can be put forward for efficient electro-thermal analyses of encased/supported graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article it is pointed out how the different layers of substructure of matter were revealed to us by experiments which were essentially very similar to the famous α-particle scattering experiment performed by Rutherford. This experiment, which revealed the nuclear structure of an atom, paved the way towards our current understanding of the fundamental constituents of matter and shaped the course of physics for the 20th century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this brief, we present a physics-based solution for the temperature-dependent electrical resistance of a suspended metallic single-layer graphene (SLG) sheet under Joule self-heating. The effect of in-plane and flexural phonons on the electron scattering rates for a doped SLG layer has been considered, which particularly demonstrates the variation of the electrical resistance with increasing temperature at different current levels using the solution of the self-heating equation. The present solution agrees well with the available experimental data done with back-gate electrostatic method over a wide range of temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We clarify important physics issues related to the recently established new mass limit for magnetized white dwarfs which is significantly super-Chandrasekhar. The issues include, justification of high magnetic field and the corresponding formation of stable white dwarfs, contribution of the magnetic field to the total density and pressure, flux freezing, variation of magnetic field and related currents therein. We also attempt to address the observational connection of such highly magnetized white dwarfs.