108 resultados para Nonlinear integral equations.
Resumo:
We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarily. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can be included in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K-l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.
Resumo:
A general direct technique of solving a mixed boundary value problem in the theory of diffraction by a semi-infinite plane is presented. Taking account of the correct edge-conditions, the unique solution of the problem is derived, by means of Jones' method in the theory of Wiener-Hopf technique, in the case of incident plane wave. The solution of the half-plane problem is found out in exact form. (The far-field is derived by the method of steepest descent.) It is observed that it is not the Wiener-Hopf technique which really needs any modification but a new technique is certainly required to handle the peculiar type of coupled integral equations which the Wiener-Hopf technique leads to. Eine allgemeine direkte Technik zur Lösung eines gemischten Randwertproblems in der Theorie der Beugung an einer halbunendlichen Ebene wird vorgestellt. Unter Berücksichtigung der korrekten Eckbedingungen wird mit der Methode von Jones aus der Theorie der Wiener-Hopf-Technik die eindeutige Lösung für den Fall der einfallenden ebenen Welle hergeleitet. Die Lösung des Halbebenenproblems wird in exakter Form angegeben. (Das Fernfeld wurde mit der Methode des steilsten Abstiegs bestimmt.) Es wurde bemerkt, daß es nicht die Wiener-Hopf-Technik ist, die wirklich irgend welcher Modifikationen bedurfte. Gewiß aber wird eine neue Technik zur Behandlung des besonderen Typs gekoppelter Integralgleichungen benötigt, auf die die Wiener-Hopf-Technik führt.
Resumo:
An efficient algorithm within the finite deformation framework is developed for finite element implementation of a recently proposed isotropic, Mohr-Coulomb type material model, which captures the elastic-viscoplastic, pressure sensitive and plastically dilatant response of bulk metallic glasses. The constitutive equations are first reformulated and implemented using an implicit numerical integration procedure based on the backward Euler method. The resulting system of nonlinear algebraic equations is solved by the Newton-Raphson procedure. This is achieved by developing the principal space return mapping technique for the present model which involves simultaneous shearing and dilatation on multiple potential slip systems. The complete stress update algorithm is presented and the expressions for viscoplastic consistent tangent moduli are derived. The stress update scheme and the viscoplastic consistent tangent are implemented in the commercial finite element code ABAQUS/Standard. The accuracy and performance of the numerical implementation are verified by considering several benchmark examples, which includes a simulation of multiple shear bands in a 3D prismatic bar under uniaxial compression.
Resumo:
Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.
Resumo:
There has been revival of interest in Jerky flow from the point of view of dynamical systems. The earliest attempt in this direction was from our group. One of the predictions of the theory is that Jerky flow could be chaotic. This has been recently verified by us. We have recently extended the earlier model to account for the spatial aspect as well. Both these models are in the form of coupled set of nonlinear differential equations and hence, they are complicated in their structure. For this reason we wish to devise a model based on the results of these two theories in the form of coupled lattice map for the description of the formation and propagation of dislocation bands. We report here one such model and its results.
Resumo:
We study the boundedness of Toeplitz operators on Segal-Bargmann spaces in various contexts. Using Gutzmer's formula as the main tool we identify symbols for which the Toeplitz operators correspond to Fourier multipliers on the underlying groups. The spaces considered include Fock spaces, Hermite and twisted Bergman spaces and Segal-Bargmann spaces associated to Riemannian symmetric spaces of compact type.
Resumo:
We show by numerical simulations that discretized versions of commonly studied continuum nonlinear growth equations (such as the Kardar-Parisi-Zhangequation and the Lai-Das Sarma-Villain equation) and related atomistic models of epitaxial growth have a generic instability in which isolated pillars (or grooves) on an otherwise flat interface grow in time when their height (or depth) exceeds a critical value. Depending on the details of the model, the instability found in the discretized version may or may not be present in the truly continuum growth equation, indicating that the behavior of discretized nonlinear growth equations may be very different from that of their continuum counterparts. This instability can be controlled either by the introduction of higher-order nonlinear terms with appropriate coefficients or by restricting the growth of pillars (or grooves) by other means. A number of such ''controlled instability'' models are studied by simulation. For appropriate choice of the parameters used for controlling the instability, these models exhibit intermittent behavior, characterized by multiexponent scaling of height fluctuations, over the time interval during which the instability is active. The behavior found in this regime is very similar to the ''turbulent'' behavior observed in recent simulations of several one- and two-dimensional atomistic models of epitaxial growth.
Resumo:
The problem of electromagnetic wave propagation in a rectangular waveguide containing a thick iris is considered for its complete solution by reducing it to two suitable integral equations, one of which is of the first kind and the other is of the second kind. These integral equations are solved approximately, by using truncated Fourier series for the unknown functions. The reflection coefficient is computed numerically from the two integral equation approaches, and almost the same numerical results are obtained. This is also depicted graphically against the wave number and compared with thin iris results, which are computed by using complementary formulations coupled with Galerkin approximations. While the reflection coefficient for a thin iris steadily increases with the wave number, for a thick iris it fluctuates and zero reflection occurs. The number of zeros of the reflection coefficient for a thick iris increases with the thickness. Thus a thick iris becomes completely transparent for some discrete wave numbers. This phenomenon may be significant in the modelling of rectangular waveguides.
Resumo:
The synthesis of dsRNA is analyzed using a pathway model with amplifications caused by the aberrant RNAs. The transgene influx rate is assumed time-decaying considering the fact that the number of transgenes can not be infinite. The dynamics of the transgene induced RNA silencing is investigated using a system of coupled nonautonomous ordinary nonlinear differential equations which describe the model phenomenologically. The silencing phenomena are detected after a period of transcription. Important contributions of certain parameters are discussed with several numerical examples.
Resumo:
Using the fact the BTZ black hole is a quotient of AdS(3) we show that classical string propagation in the BTZ background is integrable. We construct the flat connection and its monodromy matrix which generates the non-local charges. From examining the general behaviour of the eigen values of the monodromy matrix we determine the set of integral equations which constrain them. These equations imply that each classical solution is characterized by a density function in the complex plane. For classical solutions which correspond to geodesics and winding strings we solve for the eigen values of the monodromy matrix explicitly and show that geodesics correspond to zero density in the complex plane. We solve the integral equations for BMN and magnon like solutions and obtain their dispersion relation. We show that the set of integral equations which constrain the eigen values of the monodromy matrix can be identified with the continuum limit of the Bethe equations of a twisted SL(2, R) spin chain at one loop. The Landau-Lifshitz equations from the spin chain can also be identified with the sigma model equations of motion.
Estimating the Hausdorff-Besicovitch dimension of boundary of basin of attraction in helicopter trim
Resumo:
Helicopter trim involves solution of nonlinear force equilibrium equations. As in many nonlinear dynamic systems, helicopter trim problem can show chaotic behavior. This chaotic behavior is found in the basin of attraction of the nonlinear trim equations which have to be solved to determine the main rotor control inputs given by the pilot. This study focuses on the boundary of the basin of attraction obtained for a set of control inputs. We analyze the boundary by considering it at different magnification levels. The magnified views reveal intricate geometries. It is also found that the basin boundary exhibits the characteristic of statistical self-similarity, which is an essential property of fractal geometries. These results led the authors to investigate the fractal dimension of the basin boundary. It is found that this dimension is indeed greater than the topological dimension. From all the observations, it is evident that the boundary of the basin of attraction for helicopter trim problem is fractal in nature. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We study the linear m= 1 counter-rotating instability in a two-component, nearly Keplerian disc. Our goal is to understand these slow modes in discs orbiting massive black holes in galactic nuclei. They are of interest not only because they are of large spatial scale and can hence dominate observations but also because they can be growing modes that are readily excited by accretion events. Self-gravity being non-local, the eigenvalue problem results in a pair of coupled integral equations, which we derive for a two-component softened gravity disc. We solve this integral eigenvalue problem numerically for various values of mass fraction in the counter-rotating component. The eigenvalues are in general complex, being real only in the absence of the counter-rotating component, or imaginary when both components have identical surface density profiles. Our main results are as follows: (i) the pattern speed appears to be non-negative, with the growth (or damping) rate being larger for larger values of the pattern speed; (ii) for a given value of the pattern speed, the growth (or damping) rate increases as the mass in the counter-rotating component increases; (iii) the number of nodes of the eigenfunctions decreases with increasing pattern speed and growth rate. Observations of lopsided brightness distributions would then be dominated by modes with the least number of nodes, which also possess the largest pattern speeds and growth rates.
Resumo:
A dragonfly inspired flapping wing is investigated in this paper. The flapping wing is actuated from the root by a PZT-5H and PZN-7%PT single crystal unimorph in the piezofan configuration. The nonlinear governing equations of motion of the smart flapping wing are obtained using the Hamilton's principle. These equations are then discretized using the Galerkin method and solved using the method of multiple scales. Dynamic characteristics of smart flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Finally, a comparative study of performances of three piezoelectrically actuated flapping wings is performed. The numerical results in this paper show that use of PZN-7%PT single crystal piezoceramic can lead to considerable amount of wing weight reduction and increase of lift and thrust force compared to PZT-5H material. It is also shown that dragonfly inspired smart flapping wings actuated by single crystal piezoceramic are a viable contender for insect scale flapping wing micro air vehicles.
Resumo:
We introduce a family of domains-which we call the -quotients-associated with an aspect of -synthesis. We show that the natural association that the symmetrized polydisc has with the corresponding spectral unit ball is also exhibited by the -quotient and its associated unit `` -ball''. Here, is the structured singular value for the case Specifically: we show that, for such an E, the Nevanlinna-Pick interpolation problem with matricial data in a unit `` -ball'', and in general position in a precise sense, is equivalent to a Nevanlinna-Pick interpolation problem for the associated -quotient. Along the way, we present some characterizations for the -quotients.
Resumo:
Response analysis of a linear structure with uncertainties in both structural parameters and external excitation is considered here. When such an analysis is carried out using the spectral stochastic finite element method (SSFEM), often the computational cost tends to be prohibitive due to the rapid growth of the number of spectral bases with the number of random variables and the order of expansion. For instance, if the excitation contains a random frequency, or if it is a general random process, then a good approximation of these excitations using polynomial chaos expansion (PCE) involves a large number of terms, which leads to very high cost. To address this issue of high computational cost, a hybrid method is proposed in this work. In this method, first the random eigenvalue problem is solved using the weak formulation of SSFEM, which involves solving a system of deterministic nonlinear algebraic equations to estimate the PCE coefficients of the random eigenvalues and eigenvectors. Then the response is estimated using a Monte Carlo (MC) simulation, where the modal bases are sampled from the PCE of the random eigenvectors estimated in the previous step, followed by a numerical time integration. It is observed through numerical studies that this proposed method successfully reduces the computational burden compared with either a pure SSFEM of a pure MC simulation and more accurate than a perturbation method. The computational gain improves as the problem size in terms of degrees of freedom grows. It also improves as the timespan of interest reduces.