200 resultados para Newtonian fluid
Resumo:
The unsteady laminar mixed convection boundary layer flow of a thermomicropolar fluid over a long thin vertical cylinder has been studied when the free stream velocity varies with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite difference scheme in combination with the quasilinearization technique. The results show that the buoyancy, curvature and suction parameters, in general, enhance the skin friction, heat transfer and gradient of microrotation, but the effect of injection is just opposite. The skin friction and heat transfer for the micropolar fluid are considerably less than those for the Newtonian fluids. The effect of microrotation parameter is appreciable only on the microrotation gradient. The effect of the Prandtl number is appreciable on the skin friction, heat transfer and gradient of microtation.
Resumo:
A nonsimilar boundary layer analysis is presented for the problem of free convection in power-law type non-Newtonian fluids along a permeable vertical plate with variable wall temperature or heat flux distribution. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.
Resumo:
The stability of fluid flow past a membrane of infinitesimal thickness is analysed in the limit of zero Reynolds number using linear and weakly nonlinear analyses. The system consists of two Newtonian fluids of thickness R* and H R*, separated by an infinitesimally thick membrane, which is flat in the unperturbed state. The dynamics of the membrane is described by its normal displacement from the flat state, as well as a surface displacement field which provides the displacement of material points from their steady-state positions due to the tangential stress exerted by the fluid flow. The surface stress in the membrane (force per unit length) contains an elastic component proportional to the strain along the surface of the membrane, and a viscous component proportional to the strain rate. The linear analysis reveals that the fluctuations become unstable in the long-wave (alpha --> 0) limit when the non-dimensional strain rate in the fluid exceeds a critical value Lambda(t), and this critical value increases proportional to alpha(2) in this limit. Here, alpha is the dimensionless wavenumber of the perturbations scaled by the inverse of the fluid thickness R*(-1), and the dimensionless strain rate is given by Lambda(t) = ((gamma) over dot* R*eta*/Gamma*), where eta* is the fluid viscosity, Gamma* is the tension of the membrane and (gamma) over dot* is the strain rate in the fluid. The weakly nonlinear stability analysis shows that perturbations are supercritically stable in the alpha --> 0 limit.
Resumo:
The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail
Resumo:
We report here on a series of laboratory experiments on plumes, undertaken with the object of simulating the effect of the heat release that occurs in clouds on condensation of water vapor. The experimental technique used for this purpose relies on ohmic heating generated in an electrically conducting plume fluid subjected to a suitable alternating voltage across specified axial stations in the plume flow [Bhat et al., 1989]. The present series of experiments achieves a value of the Richardson number that is toward the lower end of the range that characteristics cumulus clouds. It is found that the buoyancy enhancement due to heating disrupts the eddy structures in the flow and reduces the dilution owing to entrainment of ambient fluid that would otherwise have occurred in the central region of the plume. Heating also reduces the spread rate of the plume, but as it accelerates the flow as well, the overall specific mass flux in the plume does not show a very significant change at the heat input employed in the experiment. However, there is some indication that the entrainment rate (proportional to the streamwise derivative of the mass flux) is slightly higher immediately after heat injection and slightly lower farther downstream. The measurements support a previous proposal for a cloud scenario [Bhat and Narasimha, 1996] and demonstrate how fresh insights into certain aspects of the fluid dynamics of clouds may be derived from the experimental techniques employed here.
Resumo:
The effect of the magnetic field on the unsteady flow over a stretching surface in a rotating fluid has been studied. The unsteadiness in the flow field is due to the time-dependent variation of the velocity of the stretching surface and the angular velocity of the rotating fluid. The Navier-Stokes equations and the energy equation governing the flow and the heat transfer admit a self-similar solution if the velocity of the stretching surface and the angular velocity of the rotating fluid vary inversely as a linear function of time. The resulting system of ordinary differential equations is solved numerically using a shooting method. The rotation parameter causes flow reversal in the component of the velocity parallel to the strerching surface and the magnetic field tends to prevent or delay the flow reversal. The surface shear stresses dong the stretching surface and in the rotating direction increase with the rotation parameter, but the surface heat transfer decreases. On the other hand, the magnetic field increases the surface shear stress along the stretching surface, but reduces the surface shear stress in the rotating direction and the surface heat transfer. The effect of the unsteady parameter is more pronounced on the velocity profiles in the rotating direction and temperature profiles.
Resumo:
The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.
Resumo:
The effect of correlations on the viscosity of a dilute sheared inelastic fluid is analyzed using the ring-kinetic equation for the two-particle correlation function. The leading-order contribution to the stress in an expansion in epsilon=(1-e)(1/2) is calculated, and it is shown that the leading-order viscosity is identical to that obtained from the Green-Kubo formula, provided the stress autocorrelation function in a sheared steady state is used in the Green-Kubo formula. A systemmatic extension of this to higher orders is also formulated, and the higher-order contributions to the stress from the ring-kinetic equation are determined in terms of the terms in the Chapman-Enskog solution for the Boltzmann equation. The series is resummed analytically to obtain a renormalized stress equation. The most dominant contributions to the two-particle correlation function are products of the eigenvectors of the conserved hydrodynamic modes of the two correlated particles. In Part I, it was shown that the long-time tails of the velocity autocorrelation function are not present in a sheared fluid. Using those results, we show that correlations do not cause a divergence in the transport coefficients; the viscosity is not divergent in two dimensions, and the Burnett coefficients are not divergent in three dimensions. The equations for three-particle and higher correlations are analyzed diagrammatically. It is found that the contributions due to the three-particle and higher correlation functions to the renormalized viscosity are smaller than those due to the two-particle distribution function in the limit epsilon -> 0. This implies that the most dominant correlation effects are due to the two-particle correlations.
Resumo:
The magnetohydrodynamics (MHD) flow of a conducting, homogeneous incompressible Rivlin-Ericksen fluid of second grade contained between two infinite, parallel, insulated disks rotating with the same angular velocity about two noncoincident axes, under the application of a uniform transverse magnetic field, is investigated. This model represents the MHD flow of the fluid in the instrument called an orthogonal rheometer, except for the fact that in the rheometer the rotating plates are necessarily finite. An exact solution of the governing equations of motion is presented. The force components in the x and y directions on the disks are calculated. The effects of magnetic field and the viscoelastic parameter on the forces are discussed in detail.
Resumo:
The flow, heat and mass transfer on the unsteady laminar incompressible boundary layer in micropolar fluid at the stagnation point of a 2-dimensional and an axisymmetric body have been studied when the free stream velocity and the wall temperature vary arbitrarily with time. The partial defferential equations governing the flow have been solved numerically using a quasilinear finite-difference scheme. The skin friction, microrotation gradient and heat transfer parameters are found to be strongly dependent on the coupling parameter, mass transfer and time, whereas the effect of the microrotation parameter on the skin friction and heat transfer is rather weak, but microrotation gradient is strongly affected by it. The Prandtl number and the variation of the wall temperature with time affect the heat-transfer very significantly but the skin friction and micrortation gradient are unaffected by them.
Resumo:
An equation governing the excess pressure has been derived, for an axially tethered and stenosed elastic tube filled with viscous liquid, by introducing the elasticity of the tube through pressure-area relation. This equation is solved numerically for large Womersley parameter and the results are presented for different types of pressure-radius relations and geometries by prescribing an outgoing wave suffering attenuation at some axial point of the tube. For a locally constricted tube it is observed that the pressure oscillates more and generates sound on the down stream side of the constriction.
Resumo:
Solutions are obtained for the stream function and the pressure field for the flow of non-Newtonian fluids in a tube by long peristaltic waves of arbitrary shape. The axial velocity profiles and stress distributions on the wall are discussed for particular waves of some practical interest. The effect of non- Newtonian character of the fluid is examined.
Resumo:
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.
Time dependent rotational flow of a viscous fluid over an infinite porous disk with a magnetic field
Resumo:
Both the semi-similar and self-similar flows due to a viscous fluid rotating with time dependent angular velocity over a porous disk of large radius at rest with or without a magnetic field are investigated. For the self-similar case the resulting equations for the suction and no mass transfer cases are solved numerically by quasilinearization method whereas for the semi-similar case and injection in the self-similar case an implicit finite difference method with Newton's linearization is employed. For rapid deceleration of fluid and for moderate suction in the case of self-similar flow there exists a layer of fluid, close to the disk surface where the sense of rotation is opposite to that of the fluid rotating far away. The velocity profiles in the absence of magnetic field are found to be oscillatory except for suction. For the accelerating freestream, (semi-similar flow) the effect of time is to reduce the amplitude of the oscillations of the velocity components. On the other hand the effect of time for the oscillating case is just the opposite.