118 resultados para Nanostructured electrode
Resumo:
We report a large decrease in tetragonal to cubic phase transformation temperature when grain size of bulk CuFe2O4 is reduced by mechanical ball milling. The change in phase transformation temperature was inferred from in situ high temperature conductivity and x-ray diffraction measurements. The decrease in conductivity with grain size suggests that ball milling has not induced any oxygen vacancy while the role of cation distribution in the observed decrease in phase transformation temperature is ruled out from in-field Fe-57 Mossbauer and extended x-ray absorption fine structure measurements. The reduction in the phase transformation temperature is attributed to the stability of structures with higher crystal symmetry at lower grain sizes due to negative pressure effect. (C) 2011 American Institute of Physics. doi: 10.1063/1.3493244]
Resumo:
This paper presents laboratory investigations on the visible corona and discharge radio noise. Experimental investigations are carried on various types of normal and anti-fog types of ceramic disc insulator at the recently established artificial pollution experimental facility. The results obtained from the experimental investigations show better performance for the disc insulators fitted with field reduction electrodes. In addition to the corona and radio noise investigations the comparisons are also made for the experimental results of the potential distribution across the insulator string (with and without filed reduction electrode) with the simulation results obtained by using Surface Charge Simulation Method.
Resumo:
We have developed a theory for an electrochemical way of measuring the statistical properties of a nonfractally rough electrode. We obtained the expression for the current transient on a rough electrode which shows three times regions: short and long time limits and the transition region between them. The expressions for these time ranges are exploited to extract morphological information about the surface roughness. In the short and long time regimes, we extract information regarding various morphological features like the roughness factor, average roughness, curvature, correlation length, dimensionality of roughness, and polynomial approximation for the correlation function. The formulas for the surface structure factors (the measure of surface roughness) of rough surfaces in terms of measured reversible and diffusion-limited current transients are also obtained. Finally, we explore the feasibility of making such measurements.
Resumo:
Titanium nitride films of a thickness of similar to 1.5 mu m were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Hydrotalcite-like compounds of formula Ni1-xAl(x)(OH)2(CO3)x/2 . nH2O (x = 0.1 to 0.25), having the same structure as that of alpha-Ni(OH)2, have been synthesized by substituting nickel hydroxide with aluminum. Of these, the compounds of compositions x greater-than-or-equal-to 0.2 are found to have prolonged stability in strong alkaline medium. The electrodes comprising stabilized alpha-Ni(OH)2 of x = 0.2 composition are rechargeable with discharge-capacity values of 240 (+/- 15) mAh-g-1 and are attractive for applications in various alkaline secondary cells employing nickel-positive electrodes.
Resumo:
An electrochemically impregnated sintered-nickel porous electrode with a capacity of 225 +/- 10 mAh per g of active material has been developed. This capacity is comparable with any state-of-the-art nickel hydroxide electrode reported in the literature, such as the stabilized alpha-nickel hydroxides that contain aluminium, iron and other trivalent cations. A technical update on various types of nickel positive electrodes is given.
Resumo:
Anatase titania nanotubes (TNTs) have been synthesized from P25 TiO2 powder by alkali hydrothermal method followed by post annealing. The microstructure analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the formation of anatase nanotubes with a diameter of 9-10 nm. These NTs are used to make photo anode in dye-sensitized solar cells (DSSCs). Layer by layer deposition with curing of each layer at 350 C is employed to realize films of desired thickness. The performance of these cells is studied using photovoltaic measurements. Electrochemical impedance spectroscopy (EIS) is used to quantitatively analyze the effect of thickness on the performance of these cells. These studies revealed that the thickness of TiO2 has a pronounced impact on the cell performance and the optimum thickness lies in the range of 10-14 mu m. In comparison to dye solar cells made of P25, TNTs based cells exhibit an improved open circuit voltage and fill factor (FF) due to an increased electron lifetime, as revealed by EIS analysis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ferroelectric bismuth vanadate Bi2VO5.5 (BVO) thin films have been grown on LaAlO3 (LAO) and SiO2/Si substrates with LaNiO3 (LNO) base electrodes by the pulsed laser deposition technique. The effect of substrate temperature on the ferroelectric properties of BVO thin films, has been studied by depositing the thin films at different temperatures. The BVO thin films grown on LNO/LAO were textured whereas the thin films grown on LNO/SiO2/Si were polycrystalline. The BVO thin films grown at 450?°C exhibited good ferroelectric properties indicating that LNO acts as a good electrode material. The remanent polarization Pr and coercive field Ec obtained for the BVO thin films grown at 450?°C on LNO/LAO and LNO/SiO2/Si were 2.5 ?C/cm2, 37 kV/cm and 4.6?C/cm2, 93 kV/cm, respectively. © 1995 American Institute of Physics.
Resumo:
The internal resistance of a stabilized alpha-nickel hydroxide electrode is found to be lower than that of a beta-nickel hydroxide electrode as shown from studies of the open-circuit potential-time transients at all states-of-charge. Nevertheless, the self-discharge rates of the former is higher. Gasometric studies reveal that the charging efficiency of the alpha-nickel hydroxide electrode is higher than that of the beta-nickel hydroxide electrode.
Resumo:
In the present work a gold modified pencil graphite electrode (GPGE) was used for the determination of L-dopa present in the aqueous extracts of Mucuna pruriens seeds (MPS), Mucuna pruriens leaves (MPL) and Commercial Siddha Product (CSP). The GPGE shows excellent electrocatalytic activity towards the oxidation of both L-dopa and ascorbic acid (AA), with the separation of peak potential of 98 mV. The differential pulse voltammetric (DPV) results indicated that the detection limit for L-dopa was 1.54 mu M (S/N=3). This method can be successfully applied for the determination of L-dopa in real samples.
Resumo:
Nanostructured ceria-zirconia solid solutions (Ce1 − xZrxO2, X = 0 to 0.9) have been synthesized by a single step solution combustion process using cerous nitrate, zirconyl nitrate and oxalyl dihydrazide (ODH) / carbohydrazide (CH). The as-synthesized powders show extensive XRD line broadening and the crystallite sizes calculated from the XRD line broadening are in the nanometer range (6–11 nm). The combustion derived ceria zirconia solid solutions have high surface area in the range of 36–120 m2/g. Calcination of Ce1 −xZrxO2 at 1350 °C showed three distinct solid solution regions: single phase cubic (x ≤ 0.2), biphasic cubic-tetragonal (0.2 < x Image .8) and tetragonal (x > 0.8). When x ≥ 0.9, the metastable tetragonal phase formed transforms to monoclinic phase on cooling after calcination above 1100 °C. The homogeneity of Ce1 − xZrxO2 has been confirmed by EDAX analysis. The Temperature Programmed Reduction (TPR) measurement of Ce0.5Zr0.5O2 was carried out with H2 and the TPR profile showed two water formation peaks corresponding to the utilization of surface and bulk oxygen.
Resumo:
The synthesis of nanostructured materials is a critical step in the development elf these novel materials. The basic principles involved in the production of nanocrystals and nanocomposites by rapid solidification are dealt with. An analysis of the various factors influencing the final grain size of the nanocrystals achieved during mechanical alloying has been presented. The devitrification of amorphous phase formed during rapid solidification processing and mechanical alloying provides an alternative and attractive route. Examples of the synthesis of nanostructured materials using these three different routes are drawn from our work on titanium alloys.
Resumo:
Double hydroxides of the formula, Ni1-xZn2x (OH)(2) (CO3)(x). nH(2)O (x = 0.1 to 0.25) having the same structure as that of alpha-nickel hydroxide have been synthesized by partial substitution of zinc for nickel. The hydroxide having the composition x = 0.25 exhibits prolonged stability in 6 M KOH. Pasted electrodes comprising this material are rechargeable with a stabilized reversible discharge capacity of 410 +/- 15 mAh g(-1) of nickel even under suboptimal conditions of electrode fabrication. This compares favorably with the capacity values achieved for beta-nickel hydroxide (221 mAh g(-1)', This work; 297 mAh g(-1), Delahaye-Vidal and Figlarz;(1) 456 mAh g(-1), theoretical). (C) 1999 The Electrochemical Society. S0013-4651(98)01-071-4. All rights reserved.
Resumo:
ZnO nanostructured films were deposited at room temperature on glass substrates and cotton fabrics by activated reactive evaporation in a single step without using metal catalyst or templates. Morphological observation has shown that the nanostructured film contains seaurchin-like structures, and this seaurchin containing large number of randomly grown ZnO nanoneedles. Microstructural analysis revealed the single crystalline nature of the grown nanoneedles and their growth direction was indentified to be along [0002]. PL spectrum of nanostructured films has shown a relatively weak near-band-edge emission peak at 380 nm, and a significant broad peak at 557 nm due to the oxygen vacancy-related emission. ZnO nanostructured films grown on glass substrates and cotton fabrics have shown good photocatalytic activity against rhodamine B.
Resumo:
We have investigated the local electronic properties and the spatially resolved magnetoresistance of a nanostructured film of a colossal magnetoresistive (CMR) material by local conductance mapping (LCMAP) using a variable temperature Scanning Tunneling Microscope (STM) operating in a magnetic field. The nanostructured thin films (thickness ≈500nm) of the CMR material La0.67Sr0.33MnO3 (LSMO) on quartz substrates were prepared using chemical solution deposition (CSD) process. The CSD grown films were imaged by both STM and atomic force microscopy (AFM). Due to the presence of a large number of grain boundaries (GB's), these films show low field magnetoresistance (LFMR) which increases at lower temperatures. The measurement of spatially resolved electronic properties reveal the extent of variation of the density of states (DOS) at and close to the Fermi level (EF) across the grain boundaries and its role in the electrical resistance of the GB. Measurement of the local conductance maps (LCMAP) as a function of magnetic field as well as temperature reveals that the LFMR occurs at the GB. While it was known that LFMR in CMR films originates from the GB, this is the first investigation that maps the local electronic properties at a GB in a magnetic field and traces the origin of LFMR at the GB.