39 resultados para NONORIENTABLE MANIFOLDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tight fusion frames which form optimal packings in Grassmannian manifolds are of interest in signal processing and communication applications. In this paper, we study optimal packings and fusion frames having a specific structure for use in block sparse recovery problems. The paper starts with a sufficient condition for a set of subspaces to be an optimal packing. Further, a method of using optimal Grassmannian frames to construct tight fusion frames which form optimal packings is given. Then, we derive a lower bound on the block coherence of dictionaries used in block sparse recovery. From this result, we conclude that the Grassmannian fusion frames considered in this paper are optimal from the block coherence point of view. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the study of holomorphic maps, the term ``rigidity'' refers to certain types of results that give us very specific information about a general class of holomorphic maps owing to the geometry of their domains or target spaces. Under this theme, we begin by studying when, given two compact connected complex manifolds X and Y, a degree-one holomorphic map f :Y -> X is a biholomorphism. Given that the real manifolds underlying X and Y are diffeomorphic, we provide a condition under which f is a biholomorphism. Using this result, we deduce a rigidity result for holomorphic self-maps of the total space of a holomorphic fiber space. Lastly, we consider products X = X-1 x X-2 and Y = Y-1 x Y-2 of compact connected complex manifolds. When X-1 is a Riemann surface of genus >= 2, we show that any non-constant holomorphic map F:Y -> X is of a special form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation involves preparation and photoluminescence properties of CeO2:Eu3+ (1-11 mol%) nano phosphors by eco-friendly green combustion route using Euphorbia tirucalli plant latex as fuel. The final product was characterized by powder X-ray diffraction (PXRD), Scanning electron microcopy (SEM) and Transmission electron microscopy (TEM). The PXRD and SEM results reveals cubic fluorite phase with flaky structure. The crystallite size obtained from TEM was found to be similar to 20-25 nm, which was comparable to W-H plots and Scherrer's method. Photoluminescence (PL) emission of all the Eu3+ doped samples shows characteristic bands arising from the transitions of D-5(0) -> F-5(J) (J = 0, 1, 2, 3, 4) manifolds under excitation at 373 and 467 nm excitation. The D-5(0) -> F-7(2) (613 nm) transition often dominate the emission spectra, indicating that the Eu3+ cations occupy a site without inversion center. The highest PL intensity was recorded for 9 mol% Eu3+ ions with 5 ml latex. PL quenching was observed upon further increase in Eu3+ concentration. The international commission on illumination (CIE) chromaticity co-ordinates were calculated from emission spectra, the values (x, y) were very close to national television system committee (NTSC) standard values of pure red emission. The results demonstrate that the synthesized phosphor material could be very useful for display applications. Further, the phosphor material prepared by this method was found to be non toxic, environmental friendly and could be a potential alternative to economical routes. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A triangulated d-manifold K, satisfies the inequality for da parts per thousand yen3. The triangulated d-manifolds that meet the bound with equality are called tight neighbourly. In this paper, we present tight neighbourly triangulations of 4-manifolds on 15 vertices with as an automorphism group. One such example was constructed by Bagchi and Datta (Discrete Math. 311 (citeyearbd102011) 986-995). We show that there are exactly 12 such triangulations up to isomorphism, 10 of which are orientable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider Ricci flow invariant cones C in the space of curvature operators lying between the cones ``nonnegative Ricci curvature'' and ``nonnegative curvature operator''. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to the Ricci flow has its curvature operator which satisfies R + epsilon I is an element of C at the initial time, then it satisfies R + epsilon I is an element of C on some time interval depending only on the scalar curvature control. This allows us to link Gromov-Hausdorff convergence and Ricci flow convergence when the limit is smooth and R + I is an element of C along the sequence of initial conditions. Another application is a stability result for manifolds whose curvature operator is almost in C. Finally, we study the case where C is contained in the cone of operators whose sectional curvature is nonnegative. This allows us to weaken the assumptions of the previously mentioned applications. In particular, we construct a Ricci flow for a class of (not too) singular Alexandrov spaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This note is a study of nonnegativity conditions on curvature preserved by the Ricci flow. We focus on a specific class of curvature conditions which we call non-coercive: These are the conditions for which nonnegative curvature and vanishing scalar curvature does not imply flatness. We show, in dimensions greater than 4, that if a Ricci flow invariant nonnegativity condition is satisfied by all Einstein curvature operators with nonnegative scalar curvature, then this condition is just the nonnegativity of scalar curvature. As a corollary, we obtain that a Ricci flow invariant curvature condition, which is stronger than a nonnegative scalar curvature, cannot be strictly satisfied by curvature operators (other than multiples of the identity) of compact Einstein symmetric spaces. We also investigate conditions which are satisfied by all conformally flat manifolds with nonnegative scalar curvature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1987, Kalai proved that stacked spheres of dimension d >= 3 are characterised by the fact that they attain equality in Barnette's celebrated Lower Bound Theorem. This result does not extend to dimension d = 2. In this article, we give a characterisation of stacked 2-spheres using what we call the separation index. Namely, we show that the separation index of a triangulated 2-sphere is maximal if and only if it is stacked. In addition, we prove that, amongst all n-vertex triangulated 2-spheres, the separation index is minimised by some n-vertex flag sphere for n >= 6. Furthermore, we apply this characterisation of stacked 2-spheres to settle the outstanding 3-dimensional case of the Lutz-Sulanke-Swartz conjecture that ``tight-neighbourly triangulated manifolds are tight''. For dimension d >= 4, the conjecture has already been proved by Effenberger following a result of Novik and Swartz. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a positivity condition for the curvature of oriented Riemannian 4-manifolds: the half-PIC condition. It is a slight weakening of the positive isotropic curvature (PIC) condition introduced by M. Micallef and J. Moore. We observe that the half-PIC condition is preserved by the Ricci flow and satisfies a maximality property among all Ricci flow invariant positivity conditions on the curvature of oriented 4-manifolds. We also study some geometric and topological aspects of half-PIC manifolds.