128 resultados para NICOTINAMIDE ADENINE-DINUCLEOTIDE
Resumo:
Crystal structure analysis of a galactose-specific lectin from a leguminous food crop Dolichos lablab (Indian lablab beans) has been carried out to obtain insights into its quaternary association and lectin-carbohydrate interactions. The analysis led to the identification of adenine binding sites at the dimeric interfaces of the heterotetrameric lectin. Structural details of similar adenine binding were reported in only one legume lectin, Dolichos biflorus, before this study. Here, we present the structure of the galactose-binding D. lablab lectin at different pH values in the native form and in complex with galactose and adenine. This first structure report on this lectin also provides a high resolution atomic view of legume lectin-adenine interactions. The tetramer has two canonical and two DB58-like interfaces. The binding of adenine, a non-carbohydrate ligand, is found to occur at four hydrophobic sites at the core of the tetramer at the DB58-like dimeric interfaces and does not interfere with the carbohydrate-binding site. To support the crystallographic observations, the adenine binding was further quantified by carrying out isothermal calorimetric titration. By this method, we not only estimated the affinity of the lectin to adenine but also showed that adenine binds with negative cooperativity in solution.
Resumo:
Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3-endo sugars and this demands C1-C1 distance of about 5.4 angstrom along the chains. Consideration of an energy penalty term for deviation of C1-C1 distance from the mean value, to the recent DFT-D functionals, specifically B97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014.
Stacking Interactions in RNA and DNA: Roll-Slide Energy Hyperspace for Ten Unique Dinucleotide Steps
Resumo:
Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT-D by B97X-D/6-31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B-DNA, whereas, smaller twist values correspond to higher stability to RNA and A-DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B-DNA or A-DNA conformations. Conformational preference of BII sub-state in B-DNA is preferentially displayed mainly by pyrimidine-purine steps and partly by purine-purine steps. The purine-pyrimidine steps show largest effect of 5-methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality. (c) 2014 Wiley Periodicals, Inc. Biopolymers 103: 134-147, 2015.
Resumo:
Phase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N-6-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions. Neisseria meningitidis phasevarions regulate genes including virulence factors and vaccine candidates, and alter phenotypes including antibiotic resistance. The target site recognized by these Type III N-6-adenine DNA methyltransferases is not known. Single molecule, real-time (SMRT) methylome analysis was used to identify the recognition site for three key N. meningitidis methyltransferases: ModA11 (exemplified by M.NmeMC58I) (5'-CGY(m6)AG-3'), ModA12 (exemplified by M.Nme77I, M.Nme18I and M.Nme579II) (5'-AC(m6)ACC-3') and ModD1 (exemplified by M.Nme579I) (5'-CC(m6)AGC-3'). Restriction inhibition assays and mutagenesis confirmed the SMRT methylome analysis. The ModA11 site is complex and atypical and is dependent on the type of pyrimidine at the central position, in combination with the bases flanking the core recognition sequence 5'-CGY(m6)AG-3'. The observed efficiency of methylation in the modA11 strain (MC58) genome ranged from 4.6% at 5'-GCGC(m6)AGG-3' sites, to 100% at 5'-ACGT(m6)AGG-3' sites. Analysis of the distribution of modified sites in the respective genomes shows many cases of association with intergenic regions of genes with altered expression due to phasevarion switching.
Resumo:
A MoS2-RGO composite and borocarbonitride (BC5N) have been used as electrodes to selectively detect dopamine and uric acid in the presence of ascorbic acid. Both the electrodes show excellent eletrocatalytic activity towards the detection of dopamine, the detection limits being 0.55 mu M and 2.1 mu M in the case of MoS2-RGO and BCN respectively. MoS2-RGO shows a linear range of current over the 1-110 mu M concentrations of dopamine, while BCN shows over the 2.3-20 mu M range. BCN also exhibits satisfactory performance in the oxidation of uric acid with a detection limit of 3.8 mu M and the linear range from 4 to 40 mu M. The MoS2-RGO has also been used to detect adenine as well.
Resumo:
Interaction of two different samples of graphene with DNA nucleobases and nucleosides is investigated by isothermal titration calorimetry. The relative interaction energies of the nucleobases decrease in the order guanine (G) > adenine (A) > cytosine (C) > thy mine (T) in aqueous solutions, although the positions of C and T seem to be interchangeable. The same trend is found with the nucleosides. Interaction energies of the A-T and G-C pairs are somewhere between those of the constituent bases. Theoretical calculations including van der Wools interaction and solvation energies give the trend G > A similar to T > C. The magnitudes of the interaction energies of the nucleobases with graphene are similar to those found with single-walled carbon nonotubes.
Resumo:
Several mechanisms have been proposed to explain the action of enzymes at the atomic level. Among them, the recent proposals involving short hydrogen bonds as a step in catalysis by Gerlt and Gassman [1] and proton transfer through low barrier hydrogen bonds (LBHBs) [2, 3] have attracted attention. There are several limitations to experimentally testing such hypotheses, Recent developments in computational methods facilitate the study of active site-ligand complexes to high levels of accuracy, Our previous studies, which involved the docking of the dinucleotide substrate UpA to the active site of RNase A [4, 5], enabled us to obtain a realistic model of the ligand-bound active site of RNase A. From these studies, based on empirical potential functions, we were able to obtain the molecular dynamics averaged coordinates of RNase A, bound to the ligand UpA. A quantum mechanical study is required to investigate the catalytic process which involves the cleavage and formation of covalent bonds. In the present study, we have investigated the strengths of some of the hydrogen bonds between the active site residues of RNase A and UpA at the ab initio quantum chemical level using the molecular dynamics averaged coordinates as the starting point. The 49 atom system and other model systems were optimized at the 3-21G level and the energies of the optimized systems were obtained at the 6-31G* level. The results clearly indicate the strengthening of hydrogen bonds between neutral residues due to the presence of charged species at appropriate positions. Such a strengthening manifests itself in the form of short hydrogen bonds and a low barrier for proton transfer. In the present study, the proton transfer between the 2'-OH of ribose (from the substrate) and the imidazole group from the H12 of RNase A is influenced by K41, which plays a crucial role in strengthening the neutral hydrogen bond, reducing the barrier for proton transfer.
Resumo:
The two molecules in the asymmetric unit of adenosine-5'-carboxylic acid, C10H11N5O5, exist as zwitterions with N1 protonated and the carboxyl groups ionized. Both molecules are in an anti conformation with glycosyl torsion angles of -161.4(3) and -155.5(3)degrees. The ribose moieties adopt a C3-endo-C2-exo twist conformation. The pseudo-rotation parameters are P = 0.01(1) and 6.58(1)degrees, and tau(m) = 36.2(2) and 34.6(2)degrees, for molecules A and B, respectively. The carboxyl groups of A and B are not in the standard g(+), g(-) or t conformations. Both Watson-Crick sites, N1 and N6, of the adenine bases are involved in a pair of hydrogen bonds with the dissociated carboxyl groups, forming a cyclic tetramer. The adenine base of molecule A stacks on the ribose O4' atom of a symmetry-related B molecule at a distance of 2.88 Angstrom; the adenine base of B stacks in an analogous way at a distance of 2.91 Angstrom.
Resumo:
Downy mildew pathogen of pearl millet in India is associated with the spread of the highly virulent Sclerospora graminicola pathotype-1. Twenty-seven S. graminicola isolates were screened using 20 intersimple sequence repeats (ISSR). Dinucleotide repeat primer [17898A-(CA)(6) AC] amplified a similar to 600 bp fragment specific to five isolates of pathotype-1 (Sg 048, Sg 153, Sg 212, DM-11 and DM-90). The ISSR fragment linked with pathotype-1 was cloned successfully and sequenced. To convert ISSR fragments into pathotype-specific sequence characterised amplified region (SCAR) markers, PCR primers were designed using a sequence of the cloned DNA fragment. PCR amplification using SCAR primer pair (UOM3-Sg-Path1-F/R) amplified a single 284 bp band only in isolates of S. graminicola pathotype-1. This SCAR primer pair did not amplify the 284 bp product from the other five S. graminicola pathotypes or a negative control, which demonstrates primer specificity for pathotype-1. The SCAR primer pair (UOM3-Sg-Path1-F/R) obtained in this study will provide a valuable tool for rapid identification and specific detection of S. graminicola pathotype-1.
Resumo:
tRNA synthetases (aaRS) are enzymes crucial in the translation of genetic code. The enzyme accylates the acceptor stem of tRNA by the congnate amino acid bound at the active site, when the anti-codon is recognized by the anti-codon site of aaRS. In a typical aaRS, the distance between the anti-codon region and the amino accylation site is approximately 70 Å. We have investigated this allosteric phenomenon at molecular level by MD simulations followed by the analysis of protein structure networks (PSN) of non-covalent interactions. Specifically, we have generated conformational ensembles by performing MD simulations on different liganded states of methionyl tRNA synthetase (MetRS) from Escherichia coli and tryptophenyl tRNA synthetase (TrpRS) from Human. The correlated residues during the MD simulations are identified by cross correlation maps. We have identified the amino acids connecting the correlated residues by the shortest path between the two selected members of the PSN. The frequencies of paths have been evaluated from the MD snapshots[1]. The conformational populations in different liganded states of the protein have been beautifully captured in terms of network parameters such as hubs, cliques and communities[2]. These parameters have been associated with the rigidity and plasticity of the protein conformations and can be associated with free energy landscape. A comparison of allosteric communication in MetRS and TrpRS [3] elucidated in this study highlights diverse means adopted by different enzymes to perform a similar function. The computational method described for these two enzymes can be applied to the investigation of allostery in other systems.
Resumo:
The homogeneous serine hydroxymethyltransferase purified from monkey liver, by the use of Blue Sepharose affinity chromatography, exhibited positive homotropic co-operative interactions (h = 2.5) with tetrahydrofolate and heterotropic interactions with L-serine and nicotinamide nucleotides. The enzyme had an unusually high temperature optimum of 60 degrees C and was protected against thermal inactivation by L-serine. The allosteric effects were abolished when the monkey liver enzyme was purified by using a heat-denaturation step in the presence of L-serine, a procedure adopted by earlier workers for the purification of this enzyme from mammalian and bacterial sources. The enzyme activity was inhibited completely by N5-methyltetrahydrofolate, N5-formyltetrahydrofolate, dichloromethotrexate, aminopterin and D-cycloserine, whereas methotrexate and dihydrofolate were partial inhibitors. The insoluble monkey liver enzyme-antibody complex was catalytically active and failed to show positive homotropic co-operative interactions with tetrahydrofolate (h = 1) and heterotropic interactions with NAD+. The enzyme showed a higher heat-stability in a complex with its antibody than as the free enzyme. These results highlight the pitfalls in using a heat-denaturation step in the purification of allosteric enzymes.
Resumo:
Preferred conformations of the competitive inhibitors glycyl-L-phenylalanine and glycyl-D-phenylalanine and their mode of binding to thermolysin have been studied. The difference in configuration is shown to affect significantly the mode of binding to thermolysin. Gly-D-Phe prefers to enter the active site in the global minimum conformation whereas Gly-L-Phe may enter in a higher energy conformation. Moreover, D-enantiomer is shown to have a better fit than the L-counterpart in the active site.
Resumo:
The probable modes of binding of Methyl--alpha (and beta)-D-glucopyranosides and some of their derivatives to concanavalin A have been proposed from theoretical studies. Theory predicts that beta-MeGlcP can bind to ConA in three different modes whereas alpha-MeGlcP can bind only in one mode. beta-MeGlcP in its most favourable mode of binding differs from alpha-MeGlcP in its alignment in the active-site of the lectin where it binds in a flipped or inverted orientation. Methyl substitution at the C-2 atom of the alpha-MeGlcP does not significantly affect the possible orientations of the sugar in the active-site of the lectin. Methyl substitution at C-3 or C-4, however, affects the allowed orientations drastically leading to the poor inhibiting power of Methyl-3-O-methyl-alpha-D-glucopyranoside and the inactivity of Methyl-4-O-methyl-alpha-D-glycopyranoside. These studies suggest that the increased activity of the alpha-MeGlcP over beta-MeGlcP may be due to the possibility of formation of better hydrogen bonds and to hydrophobic interactions rather than to steric factors as suggested by earlier workers. These models explain the available NMR and other binding studies.
Resumo:
A thorough investigation of salt concentration dependence of lithium DNA fibres is made using X-ray diffraction. While for low salt the C-form pattern is obtained, crystalline B-type diffraction patterns result on increasing the salt concentration. The salt content in the gel (from which fibres are drawn) is estimated by equilibrium dialysis using the Donnan equilibrium principle. The salt range giving the best crystalline B pattern is determined. It is found that in this range meridional reflections occur on the fourth and sixth layer lines. In addition, the tenth layer meridian is absent at a particular salt concentration. These results strongly suggest the presence of non-helical features in the DNA molecule. Preliminary analysis of the diffraction patterns indicates a structural variability within the B-form itself. Further, the possibility of the structural parameters of DNA being similar in solid state and in solution is discussed.
Resumo:
N6-({Delta}2-Isopentenyl) adenosine antibodies were used for the isolation of free cytokinins and cytokinin-containing tRNAs from parts of Cucumis sativus L. var. Guntur seedlings and for the estimation of cytokinins in them. Immobilized N6-({Delta}2-isopentenyl) adenosine antibodies retained tRNAs containing N6-({Delta}2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine with equal efficiencies. There were at least five cytokinins in the free form in cucumber seedlings. N6-(4-Hydroxy-3-methylbut-2-enyl) adenosine, N6-({Delta}2-isopentenyl) adenosine, and N6-({Delta}2-isopentenyl) adenine were present at least to the extent of 80, 23, and 9 nanograms, respectively, in the cotyledons and 40, 6, and 3 nanograms, respectively, in the decotyledonated seedlings per gram of tissue. Only two cytokinins were found in the tRNAs of cucumber cotyledons, namely N6-({Delta}2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine in amounts of 12 and 318 nanograms, respectively, per gram of tissue. Immunoaffinity chromatographic analysis of radiolabeled aminoacyl tRNAs from cucumber cotyledons showed that tRNAPhe and tRNATyr contained cytokinins whereas tRNAAla did not.