73 resultados para NANOSCIENCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel, cost effective,environment-friendly and energetically beneficial alternative method for the synthesis of giant dielectric pseudo-perovskite material CaCu3Ti4O12 (CCTO) is presented. The method involved auto-combustion of an aqueous precursor solution in oxygen atmosphere with the help of external fuels and is capable of producing high amount of CCTO at ultra-low temperature, in the combustion residue itself. The amount of phase generated was observed to be highly dependent on the combustion process i.e. on the nature and amount of external-fuels added for combustion. Two successful fuel combinations capable of producing reasonably higher amount of the desired compound were investigated. On a structural characterization grain size was observed to decrease drastically to nano-dimension compared to submicron-size that was obtained in a traditional sol-gel combustion and subsequent cacination method. Therefore, the method reported can produce nano-crystalline CaCu3Ti4O12 ceramic matrix at an ultra-low temperature and is expected to be applicable for other multifunctional perovskite oxide materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper, Eringen's nonlocal elasticity theory is employed to evaluate the length dependent in-plane stiffness of single-walled carbon nanotubes (SWCNTs). The SWCNT is modeled as an Euler-Bernoulli beam and is analyzed for various boundary conditions to evaluate the length dependent in-plane stiffness. It has been found that the nonlocal scaling parameter has a significant effect on the length dependent in-plane stiffness of SWCNTs. It has been observed that as the nonlocal scale parameter increases the stiffness ratio of SWCNT decreases. In nonlocality, the cantilever SWCNT has high in-plane stiffness as compared to the simply-supported and the clamped cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied charge transport in nanometer scale films of polypyrrole (PPy) that were grown electrochemically onto discontinuous ultrathin films of gold. The gold films consisted of 100 nm size islands, separated from each other by nanometer-size gaps. The thickness of PPy can be varied from 30 to 200 nm. The I-V characteristics of these hybrid PPy-Au nanostructures show strong non-linearity at low temperatures, and in particular for the more insulating samples. The hopping transport is further verified from the log / versus V-1/4 plots. Furthermore, the I-V data follow an empirical relation dlog//dV(1/4) similar to T-1/2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of nanoscale liquid droplets by friction of a solid is observed in real-time. This is achieved using a newly developed in situ transmission electron microscope (TEM) triboprobe capable of applying multiple reciprocating wear cycles to a nanoscale surface. Dynamical imaging of the nanoscale cyclic rubbing of a focused-ion-beam (FIB) processed Al alloy by diamond shows that the generation of nanoscale wear particles is followed by a phase separation to form liquid Ga nanodroplets and liquid bridges. The transformation of a two-body system to a four-body solid-liquid system within the reciprocating wear track significantly alters the local dynamical friction and wear processes. Moving liquid bridges are observed in situ to play a key role at the sliding nanocontact, interacting strongly with the highly mobile nanoparticle debris. In situ imaging demonstrates that both static and moving liquid droplets exhibit asymmetric menisci due to nanoscale surface roughness. Nanodroplet kinetics are furthermore dependent on local frictional temperature, with solid-like surface nanofilaments forming on cooling. TEM nanotribology opens up new avenues for the real-time quantification of cyclic friction, wear and dynamic solid-liquid nanomechanics, which will have widespread applications in many areas of nanoscience and nanotechnology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissolution of barium ion from aqueous suspensions of commercial nano-sized barium titanate powders (BaTiO3) has been studied at various pH values, solids loading, different time intervals and different electrolyte concentrations. Zeta potential measurements at various pH values and Fourier transform infrared spectroscopy study were also carried out to know the surface behaviour. Dissolution of Ba2+ depends on the suspension pH and stirring time period. The iso-electric points were found at 3.4 and 12.2 for as-received BaTiO3 powder and 2.3 for the leached BaTiO3. The Ba2+-leached BaTiO3 suspension retards further leaching of Ba2+ ions at different pH values, which favours the achievement of stable suspension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a simplified and quantitative analysis of the Seebeck coefficient in degenerate bulk and quantum well materials whose conduction band electrons obey Kane's non-parabolic energy dispersion relation. We use k.p formalism to include the effect of the overlap function due to the band non-parabolicity in the Seebeck coefficient. We also address the key issues and the conditions in which the Seebeck coefficient in quantum wells should exhibit oscillatory dependency with the film thickness under the acoustic phonon and ionized impurity scattering. The effect of screening length in degenerate bulk and quantum wells has also been generalized for the determination of ionization scattering. The well-known expressions of the Seebeck coefficient in non-degenerate wide band gap materials for both bulk and quantum wells has been obtained as a special case and this provides an indirect proof of our generalized theoretical analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been observed experimentally that the collective field emission from an array of Carbon Nanotubes (CNTs) exhibits fluctuation and degradation, and produces thermal spikes, resulting in electro-mechanical fatigue and failure of CNTs. Based on a new coupled multiphysics model incorporating the electron-phonon transport and thermo-electrically activated breakdown, a novel method for estimating accurately the lifetime of CNT arrays has been developed in this paper. The main results are discussed for CNT arrays during the field emission process. It is shown that the time-to-failure of CNT arrays increases with the decrease in the angle of tip orientation. This observation has important ramifications for such areas as biomedical X-ray devices using patterned films of CNTs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman studies have been carried out on CdSe nanotubes and ZnSe nanorods produced by surfactant-assisted synthesis. The Raman spectrum of CdSe nanotubes shows modes at 207.5 and 198 cm(-1); the former arises from the longitudinal optic phonon mode red-shifted with respect to the bulk mode because of phonon confinement, and the latter is the I = 1 surface phonon. Analysis based on the phonon confinement model demonstrates that the size of the nanoparticle responsible for the red-shift is about 4 nm, close to the estimate from the blue-shift of the photoluminescence. The Raman spectrum of ZnSe,nanorods shows modes at 257 and 213 cm(-1), assigned to longitudinal and transverse optic phonons, blue-shifted with respect to the bulk ZnSe modes because of compressive strain. The mode at 237 cm(-1) is the surface phonon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The indium nitride (InN)-based nanometric-objects were grown directly on a c-sapphire substrate by using plasma-assisted molecular beam epitaxy (PAMBE) at different substrate temperatures. High resolution X-ray diffraction (HRXRD) reveals the InN (0002) reflection and full width at half maximum (FWHM) found to be decreased with increasing the growth temperature. The size, height and density of the grown nanometric-objects studied by scanning electron microscopy (SEM) has remarkable differences, evidencing the decisive role of substrate temperature. Photoluminescence (PL) studies revealed that the emission energy is shifted towards the higher side from the bulk value, i.e., a blue shift in the PL spectra was observed. The temperature dependence of the PL peak position shows an ``S-shaped'' emission energy shift, which can be attributed to the localization of carriers in the nanometric-objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Designing and developing ideal catalyst paves the way to green chemistry. The fields of catalysis and nanoscience have been inextricably linked to each other for a long time. Thanks to the recent advances in characterization techniques, the old technology has been revisited with a new scope. The last decade has witnessed a flood of research activity in the field of nanocatalysis, with most of the studies focusing on the effect of size on catalytic properties. This led to the development of much greener catalysts with higher activity, selectivity and greater ease of separation from the reaction medium. This Minireview describes the emerging trends in the field of nanocatalysis with implications towards green chemistry and sustainability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have synthesized 5-7 nm size, highly crystalline TiO2 which absorbs radiation in the visible region of solar spectrum. The material shows higher photocatalytic activity both in UV and visible region of the solar radiation compared to commercial Degussa P25 TiO2. Transition metal ion substitution for Ti4+ creates mid-gap, states which act as recombination centers for electron-hole induced by photons thus reducing photocatalytic activity. However, Pt, Pd and Cu ion substituted TiO2 are excellent CO oxidation and NO reduction catalysts at temperatures less than 100 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prepared thin films composed of pure TiO2 or TiO2 with an Fe additive (at concentrations of 0.2-0.8 wt%) via a simple and cost effective sol gel process, and tested their antifungal properties (against Candida albicans (MTCC-1637), Candida tropicalis (MTCC-184), Candida parapsilosis (MTCC-2509), and Candida glabrata (MTCC-3019) and antibacterial properties (against Staphylococcus faecalis (NCIM-2604) Staphylococcus epidermidis (NCIM-2493), Staphylococcus aureus (NCIL-2122), and Bacillus subtilis (NCIM-2549)). The films were deposited on glass and Si substrates and subjected to annealing at 400 degrees C for 3 h in ambient air. The film structural and morphological properties were investigated by X-ray photoelectron spectroscopy profilometry and scanning electron microscopy, respectively. Antifungal and antibacterial tests were conducted using the drop test method. Among the species examined, Candida albicans (MTCC-1637), and Staphylococcus aureus (NCIL-2122) showed complete colony formation inhibition after exposure for 4 h for the TiO2 loaded with 0.8 wt% Fe thin films. These results indicate that increasing the Fe concentration increased the antimicrobial activity, with complete inhibition of colony formation after 4 h exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromium nanowires of diameter 40-120 nm have been grown inside lithographically fabricated U-trench templates on oxidized silicon substrate by RF sputtering deposition technique. Under favourable experimental conditions, very long nanowires can be grown which depends on the trench length and surface homogeneity along the axis. Surface wettability control by the restricted supply of metal vapour is the key for the formation of nanowires. Diameter/depth ratio for the trench template is demonstrated to be crucial for the growth of nanowires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the shape transformation of ZnO nanorods/nanotubes at temperatures (similar to 700 degrees C) much lower than the bulk melting temperature (1975 degrees C). With increasing annealing temperature, not only does shape transformation take place but the luminescence characteristics of ZnO are also modified. It is proposed that the observed shape transformation is due to surface diffusion, contradicting the previously reported notion of melting and its link to luminescence. Luminescence in the green-to-red region is observed when excited with a blue laser, indicating the conversion of blue to white light.