124 resultados para Multiplicity of positive solutions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady pseudo plane motions have been investigated in which each point of the parallel planes is subjected to non-torsional oscillations in their own plane and at any given instant the streamlines are concentric circles. Exact solutions are obtained and the form of the curve , the locus of the centers of these concentric circles, is discussed. The existence of three infinite sets of exact solutions, for the flow in the geometry of an orthogonal rheometer in which the above non-torsional oscillations are superposed on the disks, is established. Three cases arise according to whether is greater than, equal to or less than , where is angular velocity of the basic rotation and is the frequency of the superposed oscillations. For a symmetric solution of the flow these solutions reduce to a single unique solution. The nature of the curve is illustrated graphically by considering an example of the flow between coaxial rotating disks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the method of infinitesimal transformations, a 6-parameter family of exact solutions describing nonlinear sheared flows with a free surface are found. These solutions are a hybrid between the earlier self-propagating simple wave solutions of Freeman, and decaying solutions of Sachdev. Simple wave solutions are also derived via the method of infinitesimal transformations. Incomplete beta functions seem to characterize these (nonlinear) sheared flows in the absence of critical levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendrite structures of ice produced on undirectional solidification of ternary and quaternary aqueous solutions have been studied. Upon freezing, solutions containing more than one solute produce plate-shaped dendrites of ice. The spacing between dendrites increase linearly with the distance from the chill surface and the square root of local solidification time (or square root of inverse freezing rate) for any fixed composition. For fixed freezing conditions, the dendrite spacings from multicomponent aqueous solutions were a function of the concentrations and diffusion coefficients of the individual solutes. The dendrite spacing produced by freezing of a solution was changed by the addition of a solute different from those already present. If the main diffusion coefficient of the added solute is higher than that of solutes already present, the dendrite spacing is increased and vice versa. The dendrite spacing in multi-component systems increases with the total solute concentration if the constituent solutes are present in equal amounts. The dendrite spacing obtained on freezing of these dilute multicomponent solutions can be expressed by regression equations of the type Image Full-size image (2K) where L is the dendrite spacing in microns, C1, C2 and C3 are concentrations of individual solutes, Θf is the total freezing time and A1 −A8 are constants. A Yates analysis of the dendrite spacings in a factorial design of quaternary solutions indicates that there are strong interactions between individual solutes in regard to their effect on the dendrite spacings. A mass transport analysis has been used to calculate the interdendritic supersaturation ΔC of the individual solutes, the supercooling in the interdendritic liquid ΔT, and the transverse growth velocity of the dendrites, VT. In ternary solutions if two solutes are present in equal amount the supersaturation of the solute with higher main diffusion coefficient is lower, and vice versa. If a solute with higher main diffusion coefficient is added to a binary solution, the interface growth velocity, the interdendritic supersaturation of the base solute and the interdendritic supercooling increase with the quantity of solute added.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors derive the Korteweg-de Vries equation in a multicomponent plasma that includes any number of positive and negative ions. The solitary wave solutions are also found explicitly for the case of isothermal and non-isothermal electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a self-regularized pseudo-time marching scheme to solve the ill-posed, nonlinear inverse problem associated with diffuse propagation of coherent light in a tissuelike object. In particular, in the context of diffuse correlation tomography (DCT), we consider the recovery of mechanical property distributions from partial and noisy boundary measurements of light intensity autocorrelation. We prove the existence of a minimizer for the Newton algorithm after establishing the existence of weak solutions for the forward equation of light amplitude autocorrelation and its Frechet derivative and adjoint. The asymptotic stability of the solution of the ordinary differential equation obtained through the introduction of the pseudo-time is also analyzed. We show that the asymptotic solution obtained through the pseudo-time marching converges to that optimal solution provided the Hessian of the forward equation is positive definite in the neighborhood of optimal solution. The superior noise tolerance and regularization-insensitive nature of pseudo-dynamic strategy are proved through numerical simulations in the context of both DCT and diffuse optical tomography. (C) 2010 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermodynamics of monodisperse solutions of polymers in the neighborhood of the phase separation temperature is studied by means of Wilson’s recursion relation approach, starting from an effective ϕ4 Hamiltonian derived from a continuum model of a many‐chain system in poor solvents. Details of the chain statistics are contained in the coefficients of the field variables ϕ, so that the parameter space of the Hamiltonian includes the temperature, coupling constant, molecular weight, and excluded volume interaction. The recursion relations are solved under a series of simplifying assumptions, providing the scaling forms of the relevant parameters, which are then used to determine the scaling form of the free energy. The free energy, in turn, is used to calculate the other singular thermodynamic properties of the solution. These are characteristically power laws in the reduced temperature and molecular weight, with the temperature exponents being the same as those of the 3d Ising model. The molecular weight exponents are unique to polymer solutions, and the calculated values compare well with the available experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Backlund transformations relating the solutions of linear PDE with variable coefficients to those of PDE with constant coefficients are found, generalizing the study of Varley and Seymour [2]. Auto-Backlund transformations are also determined. To facilitate the generation of new solutions via Backlund transformation, explicit solutions of both classes of the PDE just mentioned are found using invariance properties of these equations and other methods. Some of these solutions are new.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let K be any quadratic field with O-K its ring of integers. We study the solutions of cubic equations, which represent elliptic curves defined over Q, in quadratic fields and prove some interesting results regarding the solutions by using elementary tools. As an application we consider the Diophantine equation r + s + t = rst = 1 in O-K. This Diophantine equation gives an elliptic curve defined over Q with finite Mordell-Weil group. Using our study of the solutions of cubic equations in quadratic fields we present a simple proof of the fact that except for the ring of integers of Q(i) and Q(root 2), this Diophantine equation is not solvable in the ring of integers of any other quadratic fields, which is already proved in [4].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyruvate conversion to acetyl-CoA by the pyruvate dehydrogenase (PDH) multienzyme complex is known as a key node in affecting the metabolic fluxes of animal cell culture. However, its possible role in causing possible nonlinear dynamic behavior such as oscillations and multiplicity of animal cells has received little attention. In this work, the kinetic and dynamic behavior of PDH of eucaryotic cells has been analyzed by using both in vitro and simplified in vivo models. With the in vitro model the overall reaction rate (v(1)) of PDH is shown to be a nonlinear function of pyruvate concentration, leading to oscillations under certain conditions. All enzyme components affect v, and the nonlinearity of PDH significantly, the protein X and the core enzyme dihydrolipoamide acyltransferase (E2) being mostly predominant. By considering the synthesis rates of pyruvate and PDH components the in vitro model is expanded to emulate in vivo conditions. Analysis using the in vivo model reveals another interesting kinetic feature of the PDH system, namely, multiple steady states. Depending on the pyruvate and enzyme levels or the operation mode, either a steady state with high pyruvate decarboxylation rate or a steady state with significantly lower decarboxylation rate can be achieved under otherwise identical conditions. In general, the more efficient steady state is associated with a lower pyruvate concentration. A possible time delay in the substrate supply and enzyme synthesis can also affect the steady state to be achieved and lead's to oscillations under certain conditions. Overall, the predictions of multiplicity for the PDH system agree qualitatively well with recent experimental observations in animal cell cultures. The model analysis gives some hints for improving pyruavte metabolism in animal cell culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

‘Best’ solutions for the shock-structure problem are obtained by solving the Boltzmann equation for a rigid sphere gas by applying minimum error criteria on the Mott-Smith ansatz. The use of two such criteria minimizing respectively the local and total errors, as well as independent computations of the remaining error, establish the high accuracy of the solutions, although it is shown that the Mott-Smith distribution is not an exact solution of the Boltzmann equation even at infinite Mach number. The minimum local error method is found to be particularly simple and efficient. Adopting the present solutions as the standard of comparison, it is found that the widely used v2x-moment solutions can be as much as a third in error, but that results based on Rosen's method provide good approximations. Finally, it is shown that if the Maxwell mean free path on the hot side of the shock is chosen as the scaling length, the value of the density-slope shock thickness is relatively insensitive to the intermolecular potential. A comparison is made on this basis of present results with experiment, and very satisfactory quantitative agreement is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New compos~tiong radient solid electrolytes are developed which have application in high temperature solid state galvanic sensors and provide a new tool for thermodynamic measurements. The electrolyte consists oi a solid solution between two ionic conductors with a common mobile ion and spatial variation in composition of otber coxup nents. Incorporation of the composite electrolyte in sensors permits the use oi dissimilar gas electrodes. It is demonsuated, both experimentall y and theoretically, that the composition gradient of the relativeiy immobile species does not give rise to a diffusion potential.The emi of a cell is determined by the activity of the mobile species at the two eiectrodes. The thermodynamic properties of solid solutions can be measured using the gradient solid electrolyte. The experimental stuay is based on model systems A?(COj)x(S04)l-x (A=Na,K),where S \.aria across the electrolyte. The functionally gradient solid electrolytes used for activity measurements consist of pure carbonate at one ena and the solid solution under stuav at the other. The identical vaiues of activity, obtained h m t hree different modes of operation of the ceil. indicate unit transport number for the ddi metal ion in the graciient electrolyte. Tlle activities in the solid solutions exhibit moderate positive deviations from Raoult 's law.