254 resultados para Multiple uses
Resumo:
In this work, we evaluate the benefits of using Grids with multiple batch systems to improve the performance of multi-component and parameter sweep parallel applications by reduction in queue waiting times. Using different job traces of different loads, job distributions and queue waiting times corresponding to three different queuing policies(FCFS, conservative and EASY backfilling), we conducted a large number of experiments using simulators of two important classes of applications. The first simulator models Community Climate System Model (CCSM), a prominent multi-component application and the second simulator models parameter sweep applications. We compare the performance of the applications when executed on multiple batch systems and on a single batch system for different system and application configurations. We show that there are a large number of configurations for which application execution using multiple batch systems can give improved performance over execution on a single system.
Resumo:
We consider the problem of transmission of correlated discrete alphabet sources over a Gaussian Multiple Access Channel (GMAC). A distributed bit-to-Gaussian mapping is proposed which yields jointly Gaussian codewords. This can guarantee lossless transmission or lossy transmission with given distortions, if possible. The technique can be extended to the system with side information at the encoders and decoder.
Resumo:
This article analyzes the effect of devising a new failure envelope by the combination of the most commonly used failure criteria for the composite laminates, on the design of composite structures. The failure criteria considered for the study are maximum stress and Tsai-Wu criteria. In addition to these popular phenomenological-based failure criteria, a micromechanics-based failure criterion called failure mechanism-based failure criterion is also considered. The failure envelopes obtained by these failure criteria are superimposed over one another and a new failure envelope is constructed based on the lowest absolute values of the strengths predicted by these failure criteria. Thus, the new failure envelope so obtained is named as most conservative failure envelope. A minimum weight design of composite laminates is performed using genetic algorithms. In addition to this, the effect of stacking sequence on the minimum weight of the laminate is also studied. Results are compared for the different failure envelopes and the conservative design is evaluated, with respect to the designs obtained by using only one failure criteria. The design approach is recommended for structures where composites are the key load-carrying members such as helicopter rotor blades.
Resumo:
We study power dissipation for systems of multiple quantum wires meeting at a junction, in terms of a current splitting matrix (M) describing the junction. We present a unified framework for studying dissipation for wires with either interacting electrons (i.e., Tomonaga-Luttinger liquid wires with Fermi-liquid leads) or noninteracting electrons. We show that for a given matrix M, the eigenvalues of (MM)-M-T characterize the dissipation, and the eigenvectors identify the combinations of bias voltages which need to be applied to the different wires in order to maximize the dissipation associated with the junction. We use our analysis to propose and study some microscopic models of a dissipative junction which employ the edge states of a quantum Hall liquid. These models realize some specific forms of the M matrix whose entries depends on the tunneling amplitudes between the different edges.
Resumo:
The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF) matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ, that simultaneously parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.
Resumo:
This paper deals with a batch service queue and multiple vacations. The system consists of a single server and a waiting room of finite capacity. Arrival of customers follows a Markovian arrival process (MAP). The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in batches of maximum size ‘b’ with a minimum threshold value ‘a’. We obtain the queue length distributions at various epochs along with some key performance measures. Finally, some numerical results have been presented.
Resumo:
We present a new method for establishing correlation between deuterium and its attached carbon in a deuterated liquid crystal. The method is based on transfer of polarization using the DAPT pulse sequence proposed originally for two spin half nuclei, now extended to a spin-1 and a spin-1/2 nuclei. DAPT utilizes the evolution of magnetization of the spin pair under two blocks of phase shifted BLEW-12 pulses on one of the spins separated by a 90 degree pulse on the other spin. The method is easy to implement and does not need to satisfy matching conditions unlike the Hartmann-Hahn cross-polarization. Experimental results presented demonstrate the efficacy of the method.
Resumo:
We consider the problem of transmission of several discrete sources over a multiple access channel (MAC) with side information at the sources and the decoder. Source-channel separation does not hold for this channel. Sufficient conditions are provided for transmission of sources with a given distortion. The channel could have continuous alphabets (Gaussian MAC is a special case). Various previous results are obtained as special cases.
Resumo:
In this paper, we exploit the idea of decomposition to match buyers and sellers in an electronic exchange for trading large volumes of homogeneous goods, where the buyers and sellers specify marginal-decreasing piecewise constant price curves to capture volume discounts. Such exchanges are relevant for automated trading in many e-business applications. The problem of determining winners and Vickrey prices in such exchanges is known to have a worst-case complexity equal to that of as many as (1 + m + n) NP-hard problems, where m is the number of buyers and n is the number of sellers. Our method proposes the overall exchange problem to be solved as two separate and simpler problems: 1) forward auction and 2) reverse auction, which turns out to be generalized knapsack problems. In the proposed approach, we first determine the quantity of units to be traded between the sellers and the buyers using fast heuristics developed by us. Next, we solve a forward auction and a reverse auction using fully polynomial time approximation schemes available in the literature. The proposed approach has worst-case polynomial time complexity. and our experimentation shows that the approach produces good quality solutions to the problem. Note to Practitioners- In recent times, electronic marketplaces have provided an efficient way for businesses and consumers to trade goods and services. The use of innovative mechanisms and algorithms has made it possible to improve the efficiency of electronic marketplaces by enabling optimization of revenues for the marketplace and of utilities for the buyers and sellers. In this paper, we look at single-item, multiunit electronic exchanges. These are electronic marketplaces where buyers submit bids and sellers ask for multiple units of a single item. We allow buyers and sellers to specify volume discounts using suitable functions. Such exchanges are relevant for high-volume business-to-business trading of standard products, such as silicon wafers, very large-scale integrated chips, desktops, telecommunications equipment, commoditized goods, etc. The problem of determining winners and prices in such exchanges is known to involve solving many NP-hard problems. Our paper exploits the familiar idea of decomposition, uses certain algorithms from the literature, and develops two fast heuristics to solve the problem in a near optimal way in worst-case polynomial time.
Resumo:
We are addressing a new problem of improving automatic speech recognition performance, given multiple utterances of patterns from the same class. We have formulated the problem of jointly decoding K multiple patterns given a single Hidden Markov Model. It is shown that such a solution is possible by aligning the K patterns using the proposed Multi Pattern Dynamic Time Warping algorithm followed by the Constrained Multi Pattern Viterbi Algorithm The new formulation is tested in the context of speaker independent isolated word recognition for both clean and noisy patterns. When 10 percent of speech is affected by a burst noise at -5 dB Signal to Noise Ratio (local), it is shown that joint decoding using only two noisy patterns reduces the noisy speech recognition error rate to about 51 percent, when compared to the single pattern decoding using the Viterbi Algorithm. In contrast a simple maximization of individual pattern likelihoods, provides only about 7 percent reduction in error rate.
Resumo:
This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.
Resumo:
An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.
Resumo:
Our attention, is focused on designing an optimal procurement mechanism which a buyer can use for procuring multiple units of a homogeneous item based on bids submitted by autonomous, rational, and intelligent suppliers. We design elegant optimal procurement mechanisms for two different situations. In the first situation, each supplier specifies the maximum quantity that can be supplied together with a per unit price. For this situation, we design an optimal mechanism S-OPT (Optimal with Simple bids). In the more generalized case, each supplier specifies discounts based on the volume of supply. In this case, we design an optimal mechanism VD-OPT (Optimal with Volume Discount, bids). The VD-OPT mechanism uses the S-OPT mechanism as a building block. The proposed mechanisms minimize the cost to the buyer, satisfying at the same time, (a) Bayesian, incentive compatibility and (b) interim individual rationality.
Resumo:
In this paper, we study the behaviour of the slotted Aloha multiple access scheme with a finite number of users under different traffic loads and optimize the retransmission probability q(r) for various settings, cost objectives and policies. First, we formulate the problem as a parameter optimization problem and use certain efficient smoothed functional algorithms for finding the optimal retransmission probability parameter. Next, we propose two classes of multi-level closed-loop feedback policies (for finding in each case the retransmission probability qr that now depends on the current system state) and apply the above algorithms for finding an optimal policy within each class of policies. While one of the policy classes depends on the number of backlogged nodes in the system, the other depends on the number of time slots since the last successful transmission. The latter policies are more realistic as it is difficult to keep track of the number of backlogged nodes at each instant. We investigate the effect of increasing the number of levels in the feedback policies. Wen also investigate the effects of using different cost functions (withn and without penalization) in our algorithms and the corresponding change in the throughput and delay using these. Both of our algorithms use two-timescale stochastic approximation. One of the algorithms uses one simulation while the other uses two simulations of the system. The two-simulation algorithm is seen to perform better than the other algorithm. Optimal multi-level closed-loop policies are seen to perform better than optimal open-loop policies. The performance further improves when more levels are used in the feedback policies.
Resumo:
This paper proposes a new approach, wherein multiple populations are evolved on different landscapes. The problem statement is broken down, to describe discrete characteristics. Each landscape, described by its fitness landscape is used to optimize or amplify a certain characteristic or set of characteristics. Individuals from each of these populations are kept geographically isolated from each other Each population is evolved individually. After a predetermined number of evolutions, the system of populations is analysed against a normalized fitness function. Depending on this score and a predefined merging scheme, the populations are merged, one at a time, while continuing evolution. Merging continues until only one final population remains. This population is then evolved, following which the resulting population will contain the optimal solution. The final resulting population will contain individuals which have been optimized against all characteristics as desired by the problem statement. Each individual population is optimized for a local maxima. Thus when populations are merged, the effect is to produce a new population which is closer to the global maxima.