36 resultados para Morphological traits
Resumo:
Nanoparticles of different shapes can induce peculiar morphologies in binary polymer blends depending on their position. It is envisaged that the increased yield stress of the filled phase slows down the relaxation resulting in arresting the peculiar morphologies which otherwise is thermodynamically unfavourable due to the increased interfacial area. This essentially means that the highly irregular structures can be preserved even without altering the interfacial tension between the phases! On the other hand, in the case of interfacially adsorbed particles, the resulting solid-like interface can also preserve the irregular structures. These phenomenal transitions in filled blends are very different from the classical copolymer compatibilized polymer blends. Moreover, these irregular structures can further pave way in designing conducting polymer blends involving conducting nanoparticles and revisiting our understanding of the concept of double percolation!
Resumo:
Elaborate male traits with no apparent adaptive value may have evolved through female mate discrimination. Tusks are an elaborate male-only trait in the Asian elephant that could potentially influence female mate choice. We examined the effect of male body size, tusk possession and musth status on female mate choice in an Asian elephant population. Large/musth males received positive responses from oestrous females towards courtship significantly more often than did small/non-musth males. Young, tusked non-musth males attempted courtship significantly more often than their tuskless peers, and received more positive responses (though statistically insignificant) than did tuskless males. A positive response did not necessarily translate into mating because of mate-guarding by a dominant male. Female elephants appear to choose mates based primarily on traits such as musth that signal direct fertility benefits through increased sperm received than for traits such as tusks that may signal only indirect fitness benefits.
Resumo:
Earthworm burrow systems are generally described based on postulated behaviours associated with the three ecological types. In this study, we used X-ray tomography to obtain 3D information on the burrowing behaviour of six very common anecic (Aporrectodea nocturna and Lumbricus terrestris) and endogeic (Aporrectodea rosea, Allolobophora chlorotica, Aporrectodea caliginosa, Aporrectodea icterica) earthworm species, introduced into repacked soil cores for 6 weeks. A simple water infiltration test, the Beerkan method, was also used to assess some functional properties of these burrow systems. Endogeic worms make larger burrow systems, which are more highly branched, less continuous and of smaller diameter, than those of anecic worms. Among the anecic species, L. terrestris burrow systems are shorter (9.2 vs 21.2 m) with a higher number (14.5 vs 23.5) of less branched burrows (12.2 vs 20.2 branches m(-1)), which are also wider (7.78 vs 5.16 mm) than those of A. nocturna. In comparison, the burrow systems made by endogeic species appeared similar to each other. However, A. rosea burrows were short and narrow, whereas A. icterica had a longer burrow system (15.7 m), more intense bioturbation intensity (refilled macropores or soil lateral compaction around them) and thus a greater number of burrows. Regarding water infiltration, anecic burrow systems were far more efficient due to open burrows linking the top and bottom of the cores. For endogeic species, we observed a linear relationship between burrow length and the water infiltration rate (R (2) = 0.49, p < 0.01). Overall, the three main characteristics significantly influencing water infiltration were burrow length, burrow number and bioturbation volume. This last characteristic highlighted the effect of burrow refilling by casts.
Resumo:
Plants, herbivores and parasitoids affect each other directly and indirectly; however, feedback effects mediated by host plant traits have rarely been demonstrated in these tritrophic interactions. Brood-site pollination mutualisms (e.g. those involving figs and fig wasps) represent specialised tritrophic communities where the progeny of mutualistic pollinators and of non-mutualistic gallers (both herbivores) together with that of their parasitoids develop within enclosed inflorescences called syconia (hence termed brood-sites or microcosms). Plant reproductive phenology (which affects temporal brood-site availability) and inflorescence size (representing brood-site size) are plant traits that could affect reproductive resources, and hence relationships between trees, pollinators and non-pollinating wasps. Analysing wasp and seed contents of syconia, we examined direct, indirect, trophic and non-trophic relationships within the interaction web of the fig-fig wasp community of Ficus racemosa in the context of brood site size and availability. We demonstrate that in addition to direct resource competition and predator-prey (host-parasitoid) interactions, these communities display exploitative or apparent competition and trait-mediated indirect interactions. Inflorescence size and plant reproductive phenology impacted plant-herbivore and plant-parasitoid associations. These plant traits also influenced herbivore-herbivore and herbivore-parasitoid relationships via indirect effects. Most importantly, we found a reciprocal effect between within-tree reproductive asynchrony and fig wasp progeny abundances per syconium that drives a positive feedback cycle within the system. The impact of a multitrophic feedback cycle within a community built around a mutualistic core highlights the need for a holistic view of plant-herbivore-parasitoid interactions in the community ecology of mutualisms.
Resumo:
Titanium oxide (Titania) thin films were synthesized on different substrates via the sol-gel dip-coating method using alkoxide solution. Some selected samples were also prepared with different percentage of Lead (Pb). The influence of Pb addition in precursor sol on the optical properties of titanium dioxide thin films was studied. The optical transmittance in the visible region has increased with increase in weight percentage of lead. The refractive index was slightly decreased with Pb addition. Crystallization of these coatings was achieved through thermal annealing at temperatures above 400 degrees C. The structural properties and surface morphology of the crystallized coatings were studied by Scanning Electron Microscopy. Increase in average grain size from 250 nm to 350 nm with increase in Pb concentration is observed. Films were appeared to more coarse with increase in Pb addition. An increase in Pb addition resulted increase in average roughness from 12 nm to 25 nm.
Resumo:
In this work, we have established the evaporation-liquid flow coupling mechanism by which sessile nanofluid droplets on a hydrophobic substrate evaporate and agglomerate to form unique morphological features under controlled external heating. It is well understood that evaporation coupled with internal liquid flow controls particle transport in a spatiotemporal sense. Flow characteristics inside the heated droplet are investigated and found to be driven by the buoyancy effects. Velocity magnitudes are observed to increase by an order at higher temperatures with similar looking flow profiles. The recirculating flow induced particle transport coupled with collision of particles and shear interaction between them leads to the formation of dome shaped viscoelastic shells of different dimensions depending on the surface temperature. These shells undergo sol-gel transition and subsequently undergo buckling instability leading to the formation of daughter cavities. With an increase in the surface temperature, droplets exhibit buckling from multiple sites over a larger sector in the top half of the droplet. Irrespective of the initial nanoparticle concentration and substrate temperature, growth of a daughter cavity (subsequent to buckling) inside the droplet is found to be controlled by the solvent evaporation rate from the droplet periphery and is shown to exhibit a universal trend.