130 resultados para Microwave-hydrothermal
Resumo:
NiO has been synthesized by microwave-induced chemical synthesis route using metalorganic complex of nickel in a domestic-type microwave oven (2.45 GHz). A novel metalorganic complex of nickel, viz., a beta-ketoester of nickel, synthesized and characterized as apart of this work, was employed as the precursor material. We varied the experimental parameters, such as the choice of solvent and microwave power, to obtain nanoparticles of NiO. The NiO nanoparticles were characterized by XRD, SEM, and TEM. The particle size of the NiO was found to vary from 7-40 nm. The magnetic behavior of the nanoparticles of NiO was examined with a vibrating sample magnetometer, revealing that as the particle size diminishes, the magnetic ordering in NiO changes, leading to a small, measurable coercivity.
Resumo:
Calcium sulphate (CaSO4) pseudomicrorods have been synthesized by alow-temperature hydrothermal method using CaSO4 powder as a precursor and hexadecylamine as a surfactant at 180 degrees C for at different intervals of time. The powder X-ray diffraction pattern indicates that the as-formed pseudomicrorods are of orthorhombic phase with lattice parameters a = 7.0023(4) angstrom, b = 6.9939(5) angstrom and c = 6.2434(4) angstrom. Scanning electron microscopy images show that the pseudomicrorods have diameters of about 0.2-2.5 mm and lengths of about 2-10 mm. Fourier transform infrared spectroscopy shows a strong doublet near 609 and 681 cm(-1) arising from nu(4) (SO42) bending vibrations. The strongest band observed at 1132 cm(-1) is associated with nu(3) (SO42-) stretching vibrations. The band near 420-450 cm(-1) is attributed to nu(2) (SO42-) bending vibrations. The Raman spectrum exhibits an intense peak at 1008 cm(-1) associated with the SO42- mode. The photoluminescence spectrum exhibits UV bands (330, 350 nm), strong green bands (402, 436 nm) and weak blue bands (503 nm). A widening of the optical band gap was observed as the particle size decreased.
Resumo:
Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave, irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal wurtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140-160 nm and a wall of thickness, 40-50 nm. The length of nanorods and nanotubes varies in the narrow range of 500-600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.
Resumo:
Nanocrystalline TiO2 was synthesized using the microwave plasma technique and characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, laser particle size analyzer, UV-vis spectroscopy and BET surface area analyzer. The synthesized TiO2 powder crystallized in anatase phase and the crystallite sizes were in nanometers. The photocatalytic activity of the compound was determined and compared against the activity of the commercial Degussa P-25 TiO2 catalyst. The degradation rates of the dyes were found to be higher over the synthesized TiO2 as compared to that over commercial Degussa P-25 TiO2.
Resumo:
We report the results of our non-resonant microwave absorption (NRMA) studies on single crystals of Tl2Ba2CaCu2O8 (Tl 2212) which reflect the occurrence of intrinsic Josephson coupling in these crystals. We have studied the magnetic field induced microwave absorption at various temperatures from 4.2K to T-c (similar to 104K) using a standard CW EPR spectrometer (H-dc parallel to c). We observe the appearance of a characteristic feature in the NRMA signals similar to the ones observed earlier by us in Bi2Sr2CaCu2O8 (Bi 2212) starting a few degrees below T-c, which on cooling passes through a maximum in intensity before disappearing at a further low temperature. This behaviour is attributed to the appearance, strengthening and disappearance of Josephson response consequent to the temperature dependence of the viscosity of the Josephson medium between the CuO2 superconducting sheets.
Resumo:
A detailed evaluation of size, shape and microstrains of BaTiO3 crystallites produced by hydrothermal crystallization at 90 – 180 °C and 0.1 – 1.2 MPa, from amorphous TiO2· xH2O (3 < × < 8) gel and aqueous Ba(OH)2 is presented, using X-ray line-broadening and TEM studies. Whereas the concentration of Ba(OH)2 and the acceptor impurities affect the crystallite shape, the stoichimetry with respect to Ba/Ti, donor as well as acceptor impurities, and the temperature of crystallization influence the microstrains. It is shown that strains in the crystallites are related to the point defects in the lattice. Compensation of the residually present hydroxyl ions in the oxygen sublattice by cation vacancies results in strains leading to metastable presence of the cubic phase at room temperature. Studies on the diffuse phase transition behaviour of these submicron powders show that the stable tetragonal phase is produced only on annealing at high temperatures where the mobility of cations vacancies are larger. Heat-treatment reduces anisotropy and strain in undoped samples, whereas annealing is less effective in doped materials. Comparison of the crystillite size by TEM showed better agreement with the Warren—Averbach method.
Resumo:
Materials with high thermal conductivity and thermal expansion coefficient matching with that of Si or GaAs are being used for packaging high density microcircuits due to their ability of faster heat dissipation. Al/SiC is gaining wide acceptance as electronic packaging material due to the fact that its thermal expansion coefficient can be tailored to match with that of Si or GaAs by varying the Al:SiC ratio while maintaining the thermal conductivity more or less the same. In the present work, Al/SiC microwave integrated circuit (MIC) carriers have been fabricated by pressureless infiltration of Al-alloy into porous SiC preforms in air. This new technique provides a cheaper alternative to pressure infiltration or pressureless infiltration in nitrogen in producing Al/SiC composites for electronic packaging applications. Al-alloy/65vol% SiC composite exhibited a coefficient of thermal expansion of 7 x 10(-6) K-1 (25 degrees C-100 degrees C) and a thermal conductivity of 147 Wm(-1) K-1 at 30 degrees C. The hysteresis observed in thermal expansion coefficient of the composite in the temperature range 100 degrees C-400 degrees C has been attributed to the presence of thermal residual stresses in the composite. Thermal diffusivity of the composite measured over the temperature range from 30 degrees C to 400 degrees C showed a 55% decrease in thermal diffusivity with temperature. Such a large decrease in thermal diffusivity with temperature could be due to the presence of micropores, microcracks, and decohesion of the Al/SiC interfaces in the microstructure (all formed during cooling from the processing temperature). The carrier showed satisfactory performance after integrating it into a MIC.
Resumo:
We report a method for the deposition of thin films and thick coatings of metal oxides through the liquid medium, involving the micro waveirradiation of a solution of a metal-organic complex in a suitable dielectric solvent. The process is a combination of sol-gel and dip-coating methods, wherein coatings can be obtained on nonconducting and semiconducting substrates, within a few minutes. Thin films of nanostructured ZnO (wurtzite) have been obtained on Si(100), glass and polymer substrates, the nanostructure determined by process parameters The coatings are strongly adherent and uniform over 15 mm x 15 mm, the growth rate similar to 0.25 mu m/min Coatings of nanocrystalline Fe2O3 and Ga2O3 have also been obtained The method is scalable to larger substrates, and is promising as a low temperature technique for coating dielectric substrates, including flexible polymers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Molybdenum-doped TiO2 organic-inorganic hybrid nanoparticles were synthesized under mild hydrothermal conditions by in situ surface modification using n-butylamine. This was carried out at 150 degrees C at autogeneous pressure over 18 h. n-Butylamine was selected as a surfactant since it produced nanoparticles of the desired size and shape. The products were characterized using powder X-ray diffraction, Fourier transform infrared spectrometry, dynamic light-scattering spectroscopy, UV-Vis spectroscopy and transmission electron microscopy. Chemical oxygen demand was estimated in order to determine the photodegradation efficiency of the molybdenum-doped TiO2 hybrid nanoparticles in the treatment of pharmaceutical effluents. It was found that molybdenum-doped TiO2 hybrid nanoparticles showed higher photocatalytic efficiency than untreated TiO2 nanoparticles.
Resumo:
TiO2 (anatase) was synthesized using a microwave-irradiation-assisted chemical method. The reaction conditions were varied to obtain unique nanostructures of TiO2 comprising nanometric spheres giving the materials a very porous morphology. The oxide was characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The specific surface area and porosity were quantified by the BET method, and the degradation of dyes was carried out using these materials. The photocatalytic activity of the nanometric TiO2 was significantly higher than that of commercially available TiO2 (Degussa P25) for the degradation of the dyes.
Resumo:
Well uniform microspheres of phase pure Covellite were synthesized through a simple hydrothermal approach using poly vinyl pyrrolidone (PVP) as surfactant. The micro-spheres were constituted of numerous self-organized knitted nano-ribbons of similar to 30 nm thickness. The effect of conc. PVP in the hydrothermal precursor solution on the product morphology was investigated. Based on the out-coming product micro-architecture a growth mechanism was proposed which emphasized bubbled nucleation inside the hydrothermal reactor. In a comparative study on linear optical properties, enhancement of luminescent intensity was observed for nano-ribbon clung microspheres rather than that of agglomerates of distorted particles, which may be attributed to better crystallinity as well as reduced surface defects and ionic vacancies for ribbon-like nano-structures.