70 resultados para Microscopy, Electron, Transmission


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current study involves synthesis of a series of Tb3+ doped ZrO2 nanophosphors by solution combustion method using oxalyl dihydrazide as fuel. The as-formed ZrO2:Tb3+ nanophosphors having different concentrations of Tb3+ (1-11 mol%) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible spectroscopic techniques and the materials were subjected to photoluminescence and photocatalytic dye decolorization studies. The PXRD analysis indicates the formation of tetragonal symmetry up to 5 mol% concentration of Tb3+. Further increase in Tb3+ concentration has lead to cubic phase formation and the same was confirmed by Rietveld refinement analysis. SEM images revealed that material was highly porous in nature comprising of large voids and cracks with irregular morphology. TEM and SAED images clearly confirm the formation of high quality tetragonal nanocrystals. The emissive properties of nanophosphors were found to be dependent on Tb3+ dopant concentration. The green emission of the material was turned to white emission with the increase of Tb3+ ion concentration. The photocatalytic activities of these nanophosphors were probed for the decolorization of Congo red under UV and Sunlight irradiation. All the photocatalysts showed enhanced activity under UV light compared to Sunlight. The photocatalyst with 7 mol% Tb3+ showed enhanced activity attributed to effective separation of charge carriers due to phase transformation from tetragonal to cubic. The influence of crystallite size and PL on charge carrier trapping-recombination dynamics was investigated. The study successfully demonstrates synthesis of tetragonal and cubic ZrO2:Tb3+ green nanophosphors with superior photoluminescence and photocatalytic activities. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide - carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size similar to 7 nm and similar to 95 m(2)/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO2 thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors. (C) 2015 Author(s).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To harvest solar energy more efficiently, novel Ag2S/Bi2WO6 heterojunctions were synthesized by a hydrothermal route. This novel photocatalyst was synthesized by impregnating Ag2S into a Bi2WO6 semiconductor by a hydrothermal route without any surfactants or templates. The as prepared structures were characterized by multiple techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), UV-vis diffuse reflection spectroscopy (DRS) and photoluminescence (PL). The characterization results suggest mesoporous hierarchical spherical structures with a high surface area and improved photo response in the visible spectrum. Compared to bare Bi2WO6, Ag2S/Bi2WO6 exhibited much higher photocatalytic activity towards the degradation of dye Rhodamine B (RhB). Although silver based catalysts are easily eroded by photogenerated holes, the Ag2S/Bi2WO6 photocatalyst was found to be highly stable in the cyclic experiments. Based on the results of BET, Pl and DRS analysis, two possible reasons have been proposed for the enhanced visible light activity and stability of this novel photocatalyst: (1) broadening of the photoabsorption range and (2) efficient separation of photoinduced charge carriers which does not allow the photoexcited electrons to accumulate on the conduction band of Ag2S and hence prevents the photocorrosion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel BioBr/Cd(OH)(2) heterostructures were synthesized by a facile chemical bath method under ambient conditions. A series of BiOBr/Cd(OH)(2) heterostructures were obtained by tuning the Bi/Cd molar ratios. The obtained heterostructures were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). Optical properties were studied by UV-visible spectroscopy, diffuse reflectance spectroscopy and photoluminescence (PL). Photocatalytic studies on rhodamine B (RhB) under visible light irradiation showed that the heterostructures are very efficient photocatalysts in mild basic medium. Scavenger test studies confirmed that the photogenerated holes and superoxide radicals (O-2(center dot-)) are the main active species responsible for RhB degradation. Comparison of photoluminescence (PL) intensity suggested that an inhibited charge recombination is crucial for the degradation process over these photocatalysts. Moreover, relative positioning of the valence and conduction band edges of the semiconductors, O-2/O-2(center dot-) and (OH)-O-center dot/H2O redox potentials and HOMO-LUMO levels of RhB appear to be responsible for the hole-specificity of degradation. Photocatalytic recycling experiments indicated the high stability of the catalysts in the reaction medium without any significant loss of activity. This study hence concludes that the heterojunction constructed between Cd(OH)(2) and BiOBr interfaces play a crucial role in influencing the charge carrier dynamics and subsequent photocatalytic activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cost effective and low temperature synthesis methods namely solution combustion and hydrothermal methods were used to prepare chromium incorporated nanocrystalline zinc ferrites. The effect of incorporation of low concentration Cr3+ ions on the structural, morphological, magnetic and transport properties of the zinc ferrite compounds were investigated. The crystalline nature and size variation with chromium content were valid from powder x-ray diffraction. Particles size and crystallite size variation were valid from scanning electron microscopy and transmission electron microscopy respectively. With the increase in chromium incorporation, the crystallite and particles sizes were decreased. Fourier transform infrared spectroscopy (FTIR) studies confirmed the presence of strong metal-oxygen bonds. The elastic properties of the materials in both the methods were estimated by FTIR studies. Magnetic properties namely saturation magentization, remanent magnetization and coercivity values were decreased with increase in Cr3+ ions concentration. The dielectric properties of the samples decreased with increase in the Cr3+ ions. The dielectric constant was observed to be of the order of 10(6) at low frequency and almost 1 at higher frequency range. The activation energy estimated using Arrhenius plots was of the order of 0.182 eV and 0.368 eV respectively for the compounds prepared by solution combustion and hydrothermal methods. The emission spectra of the samples excited at 344 nm were reported using photoluminescence (PL) spectroscopy. Further, the approximate energy band gap(E-g) was estimated from PL studies. The E-g of the materials were lie in the range of 2.11-1.98 eV. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent observation of n-type conduction in amorphous Ge20Ss_xBix at large bismuth concentrations (x = 11), which otherwise shows p-type conduction, has aroused considerable interest in the international scientific community [1]. The mechanism of such impurity incorporation in a germanium chalcogenide glass is not understood and is a topic of current interest. In our recent publications [2-10] we have brought to light some hitherto unknown and interesting features of bismuth dopants in chalcogen-rich Ge-X (X -- S, Se) glassy compositions. In this communication we present our new results of investigations on vitreous semiconductors Ge20S80 Bi using electron microscopy, electron diffraction of as-prepared and annealed/pressure quenched compositions. Our results provide conclusive support to the formation of composite clusters containing all the three elements, germanium, sulphur and bismuth, which crystallize in simpler stoichiometric compounds Bi2S3 and GeS2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A high contrast laser writing technique based on laser induced efficient chemical oxidation in insitu textured Ge films is demonstrated. Free running Nd-YAG laser pulses are used for irradiating the films. The irradiation effects have been characterised using optical microscopy, electron spectroscopy and microdensitometry. The mechanism for the observed contrast has been identified as due to formation of GeO2 phase upon laser irradiation using X-ray initiated Auger spectroscopy (XAES) and X-ray photoelectron spectroscopy (XPS). The contrast in the present films is found to be nearly five times more than that known due to GeO phase formation in similar films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phase relations in the system Bi-Sr-Cu-O at 1123 K have been investigated using optical microscopy, electron-probe microanalysis (EPMA) and powder X-ray diffraction (XRD) of equilibrated samples. Differential thermal analysis (DTA) was used to confirm liquid formation for compositions rich in BiO1.5. Compositions along the three pseudo-binary sections and inside the pseudo-ternary triangle have been examined. The attainment of equilibrium was facilitated by the use of freshly prepared SrO as the starting material. The loss of Bi2O3 from the sample was minimized by double encapsulation. A complete phase diagram at 1123 K is presented. It differs significantly from versions of the phase diagram published recently.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents the deformation behavior of high-strength pearlitic steel deformed by triaxial compression to achieve ultra-fine ferrite grain size with fragmented cementite. The consequent evolution of microstructure and texture has been studied using scanning electron microscopy, electron back-scatter diffraction, and X-ray diffraction. The synergistic effect of diffusion and deformation leads to the uniform dissolution of cementite at higher temperature. At lower temperature, significant grain refinement of ferrite phase occurs by deformation and exhibits a characteristic deformation texture. In contrast, the high-temperature deformed sample shows a weaker texture with cube component for the ferrite phase, indicating the occurrence of recrystallization. The different mechanisms responsible for the refinement of ferrite as well as the fragmentation of cementite and their interaction with each other have been analyzed. Viscoplastic self-consistent simulation was employed to understand deformation texture in the ferrite phase during triaxial compression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, high strength bulk ultrafine-grained titanium alloy Ti-6Al-4V bars were successfully processed using multi-pass warm rolling. Ti-6Al-4V bars of 12 mm diameter and several metres long were processed by multi-pass warm rolling at 650 degrees C, 700 degrees C and 750 degrees C. The highest achieved mechanical properties for Ti-6Al-4V in as rolled condition were yield strength 1191 MPa, ultimate tensile strength of 1299 MPa having an elongation of 10% when the rolling temperature was 650 degrees C. The concurrent evolution of microstructure and texture has been studied using optical microscopy, electron back scattered diffraction and x-ray diffraction. The significant improvement in mechanical properties has been attributed to the ultrafine-grained microstructure as well as the morphology of alpha and beta phases in the warm rolled specimens. The warm rolling of Ti-6Al-4V leads to formation of < 10 (1) over bar0 >alpha//RD fibre texture. This study shows that multi-pass warm rolling has potential to eliminate the costly and time consuming heat treatment steps for small diameter bar products, as the solution treated and aged (STA) properties are achievable in the as rolled condition itself. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precipitation processes in dilute nitrogen alloys of titanium have been examined in detail by conventional transmission electron microscopy (CTEM) and high-resolution electron microscopy (HREM). The alloy Ti-2 at. pct N on quenching from its high-temperature beta phase field has been found to undergo early stages of decomposition. The supersaturated solid solution (alpha''-hcp) on decomposition gives rise to an intimately mixed, irresolvable product microstructure. The associated strong tweed contrast presents difficulties in understanding the characteristic features of the process. Therefore, HREM has been carried out with a view to getting a clear picture of the decomposition process. Studies on the quenched samples of the alloy suggest the formation of solute-rich zones of a few atom layers thick, randomly distributed throughout the matrix. On aging, these zones grow to a size beyond which the precipitate/matrix interfaces appear to become incoherent and the alpha' (tetragonal) product phase is seen distinctly. The structural details, the crystallography of the precipitation process, and the sequence of precipitation reaction in the system are illustrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoscale deformation in the tribolayer of an Al–Mg alloy is studied using an in situ mechanical probe in a transmission electron microscope. The sample is strained locally at room temperature and the deformation is observed in real time. It is observed that when the tungsten probe comes into contact with the tribolayer, the material exhibits further hardening followed by material removal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here that the structural origin of an easily reversible Ge15Te83Si2 glass can be a promising candidate for phase change random access memories. In situ Raman scattering studies on Ge15Te83Si2 sample, undertaken during the amorphous set and reset processes, indicate that the degree of disorder in the glass is reduced from off to set state. It is also found that the local structure of the sample under reset condition is similar to that in the amorphous off state. Electron microscopic studies on switched samples indicate the formation of nanometric sized particles of c-SiTe2 structure. ©2009 American Institute of Physics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A transmission electron microscopy study has been carried out on the domain structures of SrBi2Nb2O9 (SBN) ferroelectric ceramics which belong to the Aurivillius family of bismuth layered perovskite oxides. SBN is a potential candidate for Ferroelectric Random access memory (FeRAM) applications. The 90° ferroelectric domains and antiphase boundaries (APBs) were identified with dark field imaging techniques using different superlattice reflections which arise as a consequence of octahedral rotations and cationic shifts. The 90° domain walls are irregular in shape without any faceting. The antiphase boundaries are less dense compared to that of SrBi2Ta2O9(SBT). The electron microscopy observations are correlated with the polarization fatigue nature of the ceramic where the domain structures possibly play a key role in the fatigue- free behavior of the Aurivillius family of ferroelectric oxides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Present work provides an electrodeposition based methodology for synthesizing Ni-rich, Ag-Ni nanowires using an alumina template. Ag-Ni system shows negligible solid solubility in the bulk. Detailed structural and compositional characterization of as-synthesized nanowires using transmission electron microscopy technique revealed a two phase microstructure. Regions along and near the nanowire axis contained crystalline Ag-Ni solid solution phase with Ag-rich composition. Whereas, regions away from the axis and near the nanowire boundary predominantly contained nanocrystalline Ni-rich, Ni-Ag solid solution phase. (C) 2013 Elsevier B. V. All rights reserved.