208 resultados para Mesoscale models
Resumo:
This paper presents the results of shaking table tests on models of rigid-faced reinforced soil retaining walls in which reinforcement materials of different tensile strength were used. The construction of the model retaining walls in a laminar box mounted on a shaking table, the instrumentation and the results from the shaking table tests are described in detail and the effects of the reinforcement parameters on the acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are presented. It was observed from these tests that the horizontal face displacement response of the rigid-faced retaining walls was significantly affected by the inclusion of reinforcement and even low-strength polymer reinforcement was found to be efficient in significantly reducing the deformation of the face. The acceleration amplifications were, however, observed to be less influenced by the reinforcement parameters. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls under the different test conditions used in the experiments.
Resumo:
Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control chemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.
Resumo:
The polyamidoamide (PAMAM) class of dendrimers was one of the first dendrimers synthesized by Tomalia and co-workers at Dow. Since its discovery the PAMAMs have stimulated many discussions on the structure and dynamics of such hyperbranched polymers. Many questions remain open because the huge conformation disorder combined with very similar local symmetries have made it difficult to characterize experimentally at the atomistic level the structure and dynamics of PAMAM dendrimers. The higher generation dendrimers have also been difficult to characterize computationally because of the large size (294852 atoms for generation 11) and the huge number of conformations. To help provide a practical means of atomistic computational studies, we have developed an atomistically informed coarse-grained description for the PAMAM dendrimer. We find that a two-bead per monomer representation retains the accuracy of atomistic simulations for predicting size and conformational complexity, while reducing the degrees of freedom by tenfold. This mesoscale description has allowed us to study the structural properties of PAMAM dendrimer up to generation 11 for time scale of up to several nanoseconds. The gross properties such as the radius of gyration compare very well with those from full atomistic simulation and with available small angle x-ray experiment and small angle neutron scattering data. The radial monomer density shows very similar behavior with those obtained from the fully atomistic simulation. Our approach to deriving the coarse-grain model is general and straightforward to apply to other classes of dendrimers.
Resumo:
We provide analytical models for capacity evaluation of an infrastructure IEEE 802.11 based network carrying TCP controlled file downloads or full-duplex packet telephone calls. In each case the analytical models utilize the attempt probabilities from a well known fixed-point based saturation analysis. For TCP controlled file downloads, following Bruno et al. (In Networking '04, LNCS 2042, pp. 626-637), we model the number of wireless stations (STAs) with ACKs as a Markov renewal process embedded at packet success instants. In our work, analysis of the evolution between the embedded instants is done by using saturation analysis to provide state dependent attempt probabilities. We show that in spite of its simplicity, our model works well, by comparing various simulated quantities, such as collision probability, with values predicted from our model. Next we consider N constant bit rate VoIP calls terminating at N STAs. We model the number of STAs that have an up-link voice packet as a Markov renewal process embedded at so called channel slot boundaries. Analysis of the evolution over a channel slot is done using saturation analysis as before. We find that again the AP is the bottleneck, and the system can support (in the sense of a bound on the probability of delay exceeding a given value) a number of calls less than that at which the arrival rate into the AP exceeds the average service rate applied to the AP. Finally, we extend the analytical model for VoIP calls to determine the call capacity of an 802.11b WLAN in a situation where VoIP calls originate from two different types of coders. We consider N-1 calls originating from Type 1 codecs and N-2 calls originating from Type 2 codecs. For G711 and G729 voice coders, we show that the analytical model again provides accurate results in comparison with simulations.
Resumo:
The electrical conduction in insulating materials is a complex process and several theories have been suggested in the literature. Many phenomenological empirical models are in use in the DC cable literature. However, the impact of using different models for cable insulation has not been investigated until now, but for the claims of relative accuracy. The steady state electric field in the DC cable insulation is known to be a strong function of DC conductivity. The DC conductivity, in turn, is a complex function of electric field and temperature. As a result, under certain conditions, the stress at cable screen is higher than that at the conductor boundary. The paper presents detailed investigations on using different empirical conductivity models suggested in the literature for HV DC cable applications. It has been expressly shown that certain models give rise to erroneous results in electric field and temperature computations. It is pointed out that the use of these models in the design or evaluation of cables will lead to errors.
Resumo:
We study quench dynamics and defect production in the Kitaev and the extended Kitaev models. For the Kitaev model in one dimension, we show that in the limit of slow quench rate, the defect density n∼1/√τ, where 1/τ is the quench rate. We also compute the defect correlation function by providing an exact calculation of all independent nonzero spin correlation functions of the model. In two dimensions, where the quench dynamics takes the system across a critical line, we elaborate on the results of earlier work [K. Sengupta, D. Sen, and S. Mondal, Phys. Rev. Lett. 100, 077204 (2008)] to discuss the unconventional scaling of the defect density with the quench rate. In this context, we outline a general proof that for a d-dimensional quantum model, where the quench takes the system through a d−m dimensional gapless (critical) surface characterized by correlation length exponent ν and dynamical critical exponent z, the defect density n∼1/τmν/(zν+1). We also discuss the variation of the shape and spatial extent of the defect correlation function with both the rate of quench and the model parameters and compute the entropy generated during such a quenching process. Finally, we study the defect scaling law, entropy generation and defect correlation function of the two-dimensional extended Kitaev model.
Resumo:
This paper presents the results of shaking table tests on model reinforced soil retaining walls in the laboratory. The influence of backfill relative density on the seismic response was studied through a series of laboratory model tests on retaining walls. Construction of model retaining walls in the laminar box mounted on shaking table, instrumentation and results from the shaking table tests are described in detail. Three types of walls: wrap- and rigid-faced reinforced soil walls and unreinforced rigid-faced walls constructed to different densities were tested for a relatively small excitation. Wrap-faced walls are further tested for higher base excitation at different frequencies and relative densities. It is observed from these tests that the effect of backfill density on the seismic performance of reinforced retaining walls is pronounced only at very low relative density and at the higher base excitation. The walls constructed with higher backfill relative density showed lesser face deformations and more acceleration amplifications compared to the walls constructed with lower densities when tested at higher base excitation. The response of wrap- and rigid-faced retaining walls is not much affected by the backfill relative density when tested at smaller base excitation. The effects of facing rigidity were evaluated to a limited extent. Displacements in wrap-faced walls are many times higher compared to rigid-faced walls. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls constructed to when subjected to smaller and higher base excitation for the range of relative density employed in the testing program. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes the use of empirical modeling techniques for building microarchitecture sensitive models for compiler optimizations. The models we build relate program performance to settings of compiler optimization flags, associated heuristics and key microarchitectural parameters. Unlike traditional analytical modeling methods, this relationship is learned entirely from data obtained by measuring performance at a small number of carefully selected compiler/microarchitecture configurations. We evaluate three different learning techniques in this context viz. linear regression, adaptive regression splines and radial basis function networks. We use the generated models to a) predict program performance at arbitrary compiler/microarchitecture configurations, b) quantify the significance of complex interactions between optimizations and the microarchitecture, and c) efficiently search for'optimal' settings of optimization flags and heuristics for any given microarchitectural configuration. Our evaluation using benchmarks from the SPEC CPU2000 suits suggests that accurate models (< 5% average error in prediction) can be generated using a reasonable number of simulations. We also find that using compiler settings prescribed by a model-based search can improve program performance by as much as 19% (with an average of 9.5%) over highly optimized binaries.
Resumo:
This paper presents the results of shaking table tests on geotextile-reinforced wrap-faced soil-retaining walls. Construction of model retaining walls in a laminar box mounted on a shaking table, instrumentation, and results from the shaking table tests are discussed in detail. The base motion parameters, surcharge pressure and number of reinforcing layers are varied in different model tests. It is observed from these tests that the response of the wrap-faced soil-retaining walls is significantly affected by the base acceleration levels, frequency of shaking, quantity of reinforcement and magnitude of surcharge pressure on the crest. The effects of these different parameters on acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are also presented. The results obtained from this study are helpful in understanding the relative performance of reinforced soil-retaining walls under different test conditions used in the experiments.
Resumo:
This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts. The Lanchester attrition model is used to develop the dynamical equations governing the variation in force strength. Three different allocation schemes - Time-Zero-Allocation (TZA), Allocate-Assess-Reallocate (AAR), and Continuous Constant Allocation (CCA) - are considered and the optimal solutions are obtained in each case. Numerical examples are given to support the analytical results.
Resumo:
This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts. The Lanchester attrition model is used to develop the dynamical equations governing the variation in force strength. Three different allocation schemes - Time-Zero-Allocation (TZA), Allocate-Assess-Reallocate (AAR), and Continuous Constant Allocation (CCA) - are considered and the optimal solutions are obtained in each case. Numerical examples are given to support the analytical results.
Resumo:
Suitable pin-to-hole interference can significantly increase the fatigue life of a pin joint. In practical design, the initial stresses due to interference are high and they are proportional to the effective interference. In experimental studies on such joints, difficulties have been experienced in estimating the interference accurately from physical measurements of pin and hole diameters. A simple photoelastic method has been developed to determine the effective interference to a high degree of accuracy. This paper presents the method and reports illustrative data from a successful application thereof.
Resumo:
This paper studies an ultrasonic wave dispersion characteristics of a nanorod. Nonlocal strain gradient models (both second and fourth order) are introduced to analyze the ultrasonic wave behavior in nanorod. Explicit expressions are derived for wave numbers and the wave speeds of the nanorod. The analysis shows that the fourth order strain gradient model gives approximate results over the second order strain gradient model for dynamic analysis. The second order strain gradient model gives a critical wave number at certain wave frequency, where the wave speeds are zero. A relation among the number of waves along the nanorod, the nonlocal scaling parameter (e(0)a), and the length of the nanorod is obtained from the nonlocal second order strain gradient model. The ultrasonic wave characteristics of the nanorod obtained from the nonlocal strain gradient models are compared with the classical continuum model. The dynamic response behavior of nanorods is explained from both the strain gradient models. The effect of e(0)a on the ultrasonic wave behavior of the nanorods is also observed. (C) 2010 American Institute of Physics.
Resumo:
We examine the stability of hadron resonance gas models by extending them to include undiscovered resonances through the Hagedorn formula. We find that the influence of unknown resonances on thermodynamics is large but bounded. We model the decays of resonances and investigate the ratios of particle yields in heavy-ion collisions. We find that observables such as hydrodynamics and hadron yield ratios change little upon extending the model. As a result, heavy-ion collisions at the RHIC and LHC are insensitive to a possible exponential rise in the hadronic density of states, thus increasing the stability of the predictions of hadron resonance gas models in this context. Hadron resonance gases are internally consistent up to a temperature higher than the crossover temperature in QCD, but by examining quark number susceptibilities we find that their region of applicability ends below the QCD crossover.
Resumo:
In this article, the problem of two Unmanned Aerial Vehicles (UAVs) cooperatively searching an unknown region is addressed. The search region is discretized into hexagonal cells and each cell is assumed to possess an uncertainty value. The UAVs have to cooperatively search these cells taking limited endurance, sensor and communication range constraints into account. Due to limited endurance, the UAVs need to return to the base station for refuelling and also need to select a base station when multiple base stations are present. This article proposes a route planning algorithm that takes endurance time constraints into account and uses game theoretical strategies to reduce the uncertainty. The route planning algorithm selects only those cells that ensure the agent will return to any one of the available bases. A set of paths are formed using these cells which the game theoretical strategies use to select a path that yields maximum uncertainty reduction. We explore non-cooperative Nash, cooperative and security strategies from game theory to enhance the search effectiveness. Monte-Carlo simulations are carried out which show the superiority of the game theoretical strategies over greedy strategy for different look ahead step length paths. Within the game theoretical strategies, non-cooperative Nash and cooperative strategy perform similarly in an ideal case, but Nash strategy performs better than the cooperative strategy when the perceived information is different. We also propose a heuristic based on partitioning of the search space into sectors to reduce computational overhead without performance degradation.