49 resultados para Mesocellular foam


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permeation of gases through single surfactant stabilized aqueous films has previously been studied in view of the potentiality of foam to separate gaseous mixtures. The earlier analysis assumed that the gas phase was well mixed and that the mass-transfer process was completely controlled by the liquid film. Permeabilities evaluated from single film data based on such analysis failed to predict the mass-transfer data obtained on permeation through two films. It is shown that the neglect of gas-phase resistance and the effect of film movement is the reason for the failure of the well-mixed gas models. An exact analysis of diffusion through two films is presented. It successfully predicts the experimental data on two films based on parameters evaluated from single film data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crush bands that form during plastic deformation of closed-cell metal foams are often inclined at 11-20 degrees to the loading axis, allowing for shear displacement of one part of the foam with respect to the other. Such displacement is prevented by the presence of a lateral constraint. This was analysed in this study, which shows that resistance against shear by the constraint leads to the strain-hardening effect in the foam that has been reported in a recent experimental study. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is concerned with a study on the energy absorption behavior of polyurethane (PU) foams such as flexible high resilience (HR), flexible viscoelastic (VE) and semi-rigid (SR) foams as a function of the overall foam density. Foam samples were prepared in the form of cubes by mixing appropriate polyol and isocyanate compounds produced by Huntsman International India Pvt. Ltd. in varying proportions leading to a range of densities for each type of foam. The cubical samples were tested under compressive load in a standard UTM. Based on the measured load-displacement behaviors, variations of peak load and energy-absorption attributes with respect to density are plotted for each type of foam and the possible existence of an optimum foam density is shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The comparative compressive properties of syntactic foam with and without the inclusion of E-glass fibers in the form of chopped strands are reported. The effort pointed to the fact that the fiber-free syntactic foam had a higher compressive strength than the fiber-bearing one whereas as regards the moduli values they did not differ much. The difference in strength is correlated with the amount of voids present in two foams. The scope of the work was further expanded by including scanning electron microscopy for examining: the surface features of samples prior to and after compression test.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of different cooling rates as a strategy to enhance the structure of aluminium foams is studied. The potential to influence the level of morphological defects and cell size non-uniformities is investigated. AlSi6Cu4 alloy was foamed through the powder compact route and then solidified, applying three different cooling rates. Foam development was monitored in situ by means of X-ray radioscopy while foaming inside a closed mould. The macro-structure of the foams was analysed in terms of cell size distribution as determined by X-ray tomography. Compression tests were conducted to assess the mechanical performance of the foams and measured properties were correlated with structural features of the foams. Moreover, possible changes in the ductile brittle nature of deformation with cooling rate were analysed by studying the initial stages of deformation. We observed improvements in the cell size distributions, reduction in microporosity and grain size at higher cooling rates, which in turn led to a notable enhancement in compressive strength. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slag foaming under dynamic conditions has been studied in laboratory scale to examine the influence of properties commonly used to describe the foaminess and foam stability of slags under steady-state conditions. Synthetically produced slags with compositions relevant to tool steel and stainless steel production were studied through X-ray equipment in measurements simulating the dynamic conditions found in real processes. It is found that the dynamic systems display a more complex behavior than systems Under steady state. Traditional theories for foaming do not seem to be valid for slag foaming under dynamic conditions. The foam displays a fluctuating behavior, which the presently available models are not able to take into account. The concept of a foaming index does not seem to be applicable, resulting in the need for alternative models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of cell agglomerates has been found to influence significantly the rates of liquid drainage from static foams. The process of drainage has been modelled by considering the foam to be made of pentagonal dodecahedral bubbles yielding films, nearly horizontal and nearly vertical Plateau borders. The films are assumed to drain into both kinds of Plateau borders equally. The horizontal Plateau borders are assumed to receive liquid from the films and drain into the vertical Plateau borders, which, in turn, form the main flow paths for gravity drainage. The drainage process is assumed to be similar to that for pure liquid until a stage is reached where the size of the cell agglomerates become equivalent to those of films and Plateau borders. Thereafter, a squeezing flow mechanism has been formulated where the aggromerates deform and flow. The model based on the above assumptions has been verified against experimental results and has been found to predict not only drainage data but also the separation of cell agglomerates from broths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new feature-based technique is introduced to solve the nonlinear forward problem (FP) of the electrical capacitance tomography with the target application of monitoring the metal fill profile in the lost foam casting process. The new technique is based on combining a linear solution to the FP and a correction factor (CF). The CF is estimated using an artificial neural network (ANN) trained using key features extracted from the metal distribution. The CF adjusts the linear solution of the FP to account for the nonlinear effects caused by the shielding effects of the metal. This approach shows promising results and avoids the curse of dimensionality through the use of features and not the actual metal distribution to train the ANN. The ANN is trained using nine features extracted from the metal distributions as input. The expected sensors readings are generated using ANSYS software. The performance of the ANN for the training and testing data was satisfactory, with an average root-mean-square error equal to 2.2%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing theories of foam drainage assume bubbles as pentagonal dodecahedrons, though a close-packed structure built with cells of this shape is not space-filling. The present work develops a theory for calculating drainage rates based on the more realistic beta-tetrakaidecahedral shape for the bubbles. In contrast with the earlier works, three types of films, and Plateau borders had to be considered in view of the more complex shape used in the present work. The exchange of liquid between Plateau borders was treated in a way different From earlier theories, using the idea that the volume of junctions of Plateau borders is negligible. For foams made of large bubble sizes, the present model performs as well as the previous models, but when bubble size is small, its predictions of drainage rates from static foams are in better agreement with the experimental observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Syntactic foams made by mechanical mixing of polymeric binder and hollow spherical particles are used as core materials in sandwich structured materials. Low density of such materials makes them suitable for weight sensitive applications. The present study correlates various postcompression microscopic observations in syntactic foams to the localized events leading the material to fracture. Depending upon local stress conditions the fracture features of syntactic foam are identified for various modes of fracture such as compressive, shear and tensile. Microscopic observations were also taken at sandwich structures containing syntactic foam as core materials and also at reinforced syntactic foam containing glass fibers. These observations provide conclusive evidences for the fracture features generated under different failure modes. All the microscopic observations were taken using scanning electron microscope in secondary electron mode. (C) 2002 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During stainless steelmaking, reductions of oxides, dissolution of oxides in the slag, and foam formation take place simultaneously. Each of these phenomena independently has been studied by a number of investigators, but little information is available for these phenomena acting simultaneously. Experiments have been conducted to study the simultaneous reduction of oxides of chromium, vanadium, and iron from stainless steelmaking slag by carbon along with the dissolution of alumina in the slag. The overall phenomena and the effect on the chromium oxide reduction have been studied..

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current paper suggests a new procedure for designing helmets for head impact protection for users such as motorcycle riders. According to the approach followed here, a helmet is mounted on a featureless Hybrid 3 headform that is used in assessing vehicles for compliance to the FMVSS 201 regulation in the USA for upper interior head impact safety. The requirement adopted in the latter standard, i.e. not exceeding a threshold HIC(d) limit of 1000, is applied in the present study as a likely criterion for adjudging the efficacy of helmets. An impact velocity of 6 m/s (13.5 mph) for the helmet-headform system striking a rigid target can probably be acceptable for ascertaining a helmet's effectiveness as a countermeasure for minimizing the risk of severe head injury. The proposed procedure is demonstrated with the help of a validated LS-DYNA model of a featureless Hybrid 3 headform in conjunction with a helmet model comprising an outer polypropylene shell to the inner surface of which is bonded a protective polyurethane foam padding of a given thickness. Based on simulation results of impact on a rigid surface, it appears that a minimum foam padding thickness of 40 mm is necessary for obtaining an acceptable value of HIC(d).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of novel organic-inorganic hybrid membranes have been prepared employing Nafion and acid-functionalized meso-structured molecular sieves (MMS) with varying structures and surface area. Acid-functionalized silica nanopowder of surface area 60 m(2)/g, silica meso-structured cellular foam (MSU-F) of surface area 470 m(2)/g and silica meso-structured hexagonal frame network (MCM-41) of surface area 900 m(2)/g have been employed as potential filler materials to form hybrid membranes with Nafion framework. The structural behavior, water uptake, proton conductivity and methanol permeability of these hybrid membranes have been investigated. DMFCs employing Nafion-silica MSU-F and Nafion-silica MCM-41 hybrid membranes deliver peak-power densities of 127 mW/cm(2) and 100 mW/cm(2), respectively; while a peak-power density of only 48 mW/cm(2) is obtained with the DMFC employing pristine recast Nafion membrane under identical operating conditions. The aforesaid characteristics of the hybrid membranes could be exclusively attributed to the presence of pendant sulfonic acid groups in the filler, which provide fairly continuous proton-conducting pathways between filler and matrix in the hybrid membranes facilitating proton transport without any trade-off between its proton conductivity and methanol crossover. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.036211jes] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic-inorganic hybrid membranes are prepared from Nafion and acid functionalized aluminosilicate with varying structures and surface areas. Acid-functionalized mesostructured aluminosilicate with cellular foam framework (Al-MSU-F type) of surface area 463 m(2) g(-1), acid-functionalized aluminosilicate molecular sieves (Al-HMS type) of surface area 651 m(2) g(-1) and acid-functionalized mesostructured aluminosilicate with hexagonal network (Al-MCM-41 type) of surface area 799 m(2) g(-1) have been employed as potential filler materials to form hybrid membranes with Nafion. The structural behavior, water uptake, ion-exchange capacity, proton conductivity and methanol permeability of the hybrid membranes are extensively investigated. Direct methanol fuel cells (DMFCs) with Al-HMS-Nafion and Al-MCM-41-Nafion hybrid membranes deliver respective peak power-densities of 170 mW cm(-2) and 246 mW cm(-2), while a peak power-density of only 48 mW cm(-2) is obtained for the DMFC employing pristine recast-Nafion membrane under identical operating conditions. The unique properties associated with hybrid membranes could be exclusively attributed to the presence of pendant sulfonic-acid groups in the filler materials, which provide proton-conducting pathways between the filler and matrix in the hybrid membranes, and facilitate proton transport with adequate balance between proton conductivity and methanol permeability. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present the characterization and performance studies of self-priming peristaltic pump for drug delivery application. Conventional materials and methods have been used to fabricate single cam mechanism based peristaltic micropump. To control the fluid flow precisely in micro liter range, a single cam mechanism has been used instead of conventional roller mechanism. The fabricated pump is suitable for liquid, gas and foam. Using water as a fluid medium, a flow rate of 12.5 mu l/rpm is achieved using a flexible silicone tube of inner diameter 1.5 mm and outer diameter 2.5 mm. Other than water, higher viscosity fluids showed a decrease in the flow rate. The designed micropump exhibits a linear dependence of flow rate in the voltage range of 2.5V to 5V. Drug delivery using micropump demands that the micropump has to pump against the blood pressure (maximum of 25kPa) with constant flow rate. Here the designed pump is able to pump the liquid with a constant flow rate of 500 mu l/min (water) up to a backpressure of 40kPa. It was observed that, by increasing the backpressure above 40kPa, flow rate of the pump gradually decreased to 125 mu l/min at 120kPa. In addition, Micropump based drug delivery demands that the micropump should be normally in closed condition in all the positions to avoid drug leakage and bleeding. Hence, micropump has been characterized for normally closed condition in all positions (0 degrees to 360 degrees). However, a minute leak of 0.14 % was found for an inlet pressure of 140kPa. Also, the normally closed region with no leak is observed up to 60kPa of pressure in all positions (0 degrees to 360 degrees).