51 resultados para Maximal Compact Frames


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An external pipe-crawling device presented in this paper aids the inspection of pipes in hazardous environments and areas inaccessible to humans. The principal component of our design, which uses inchworm type motion, is a compliant ring mechanism actuated using shape memory alloy (SMA) wire. It was fabricated and tested and was reported in our earlier work. But this device had a drawback of low crawling speed (about 1 mm/min) owing to the delay in heating and cooling of the SMA strips in the linear actuation. Additionally, that design also had the difficulties of mounting on pipes with closed ends, large radial span, and the need for housing for electrical insulation and guiding of the SMA wire. In this paper we present a compact design that overcomes the difficulties of the earlier design. In particular, we present a compact compliant mechanism with two halves so as to enable mounting and un-mounting on any closed or open pipe. Another feature is the presence of insulation and guiding of the SMA wire without housing. This design results in a reduction of the radial span of the ring from 22 mm to 12 mm, and the stiffness of the mechanism and the SMA wire are matched. An SMA helical spring is to used in the place of an SMA strip to increase the crawling speed of the device. A microcontroller-based circuitry is also fitted to cyclically.activate the SMA wires and springs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental studies on a compact trapped vortex combustor indicate that cavity injection strategies play a major role on flame stability. Detailed experiments indicate that blow-out occurs for a certain range of cavity air flow velocities. An unsteady RANS-based reacting flow simulation tool has been utilized to study the basic dynamics of cavity vortex for various flow conditions. The phenomenon of flame blow-out at certain intermediate cavity air velocities is explained on the basis of transition from a cavity-stabilized mode to an opposed flow stagnation mode. A novel strategy is proposed for achieving flame stability at all conditions. This involves using a flow guide vane in the path of the main flow to direct a portion of the main flow into the cavity. This seems to result in a desirable dual vortex structure, i.e., a small clockwise vortex behind the vane and large counterclockwise vortex in the cavity. Experimental results show stable flame at all flow conditions with the flow guide vane, and pressure drop is estimated to be within acceptable limits. Cold flow simulations show self-similar velocity profiles for a range of main inlet velocities, and high reverse velocity ratios (-0.3) are observed. Such a high-velocity ratio in the reverse flow shear layer profile leads to enhanced production of turbulence imperative to compact combustors. Reacting flow simulations show even higher reverse velocity ratios (above -0.7) due to flow acceleration. The flame is observed to be stable, even though minor shear layer oscillations are present in the form of vortex shedding. Self-similarity is also observed in reacting flow temperature profiles at combustor exit over the entire range of the mainstream velocity. This indicates that the present configuration holds a promise of delivering robust performance invariant of the flow operating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the design of a compact low pass filter (LPF) with wide stop band region using trisection stepped impedance resonators in microstrip medium. Experimental results of a low pass filter designed at 1 GHz have been compared against the analytical and EM simulation results for the validation of the design. Results are satisfactorily matching each other. The maximum insertion of the measured filter is 0.2 dB and minimum return loss is 13.5 dB over the pass band. The stop band rejection is better than 20 dB from 1.5 GHz to 4.2 GHz and hence wide stop band performance is achieved. Overall size of the filter is 30 mm x 20 mm x 0.78 mm which is 0.1 lambda x 0.066 lambda. x 0.0026 lambda at 1 GHz. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anisotropic emission of gravitational waves (GWs) from inspiralling compact binaries leads to the loss of linear momentum and hence gravitational recoil of the system. The loss rate of linear momentum in the far-zone of the source (a nonspinning binary system of black holes in quasicircular orbit) is investigated at the 2.5 post-Newtonian (PN) order and used to provide an analytical expression in harmonic coordinates for the 2.5PN accurate recoil velocity of the binary accumulated in the inspiral phase. The maximum recoil velocity of the binary system at the end of its inspiral phase (i.e at the innermost stable circular orbit (ISCO)) estimated by the 2.5PN formula is of the order of 4 km s(-1) which is smaller than the 2PN estimate of 22 km s(-1). Going beyond inspiral, we also provide an estimate of the more important contribution to the recoil velocity from the plunge phase. The maximum recoil velocity at the end of the plunge, involving contributions both from inspiral and plunge phase, for a binary with symmetric mass ratio nu = 0.2 is of the order of 182 km s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss rate of linear momentum from a binary system composed of compact objects (radially falling towards each other under mutual gravitational influence) has been investigated using the multipolar post-Minkowskian approach. The 2.5PN accurate analytical formula for the linear momentum flux is provided, in terms of the separation of the two objects, in harmonic coordinates, both for a finite and an infinite initial separation. The 2.5PN formulas for the linear momentum flux are finally used to estimate the recoil velocity accumulated during a premerger phase of the binary evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge linearization techniques have been used over the years in advanced compact models for bulk and double-gate MOSFETs in order to approximate the position along the channel as a quadratic function of the surface potential (or inversion charge densities) so that the terminal charges can be expressed as a compact closed-form function of source and drain end surface potentials (or inversion charge densities). In this paper, in case of the independent double-gate MOSFETs, we show that the same technique could be used to model the terminal charges quite accurately only when the 1-D Poisson solution along the channel is fully hyperbolic in nature or the effective gate voltages are same. However, for other bias conditions, it leads to significant error in terminal charge computation. We further demonstrate that the amount of nonlinearity that prevails between the surface potentials along the channel actually dictates if the conventional charge linearization technique could be applied for a particular bias condition or not. Taking into account this nonlinearity, we propose a compact charge model, which is based on a novel piecewise linearization technique and shows excellent agreement with numerical and Technology Computer-Aided Design (TCAD) simulations for all bias conditions and also preserves the source/drain symmetry which is essential for Radio Frequency (RF) circuit design. The model is implemented in a professional circuit simulator through Verilog-A, and simulation examples for different circuits verify good model convergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since it is difficult to find the analytical solution of the governing Poisson equation for double gate MOSFETs with the body doping term included, the majority of the compact models are developed for undoped-body devices for which the analytical solution is available. Proposed is a simple technique to included a body doping term in such surface potential based common double gate MOSFET models also by taking into account any differences between the gate oxide thickness. The proposed technique is validated against TCAD simulation and found to be accurate as long as the channel is fully depleted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this paper is on the practical aspects of design, prototyping, and testing of a compact, compliant external pipe-crawling robot that can inspect a closely spaced bundle of pipes in hazardous environments and areas that are inaccessible to humans. The robot consists of two radially deployable compliant ring actuators that are attached to each other along the longitudinal axis of the pipe by a bidirectional linear actuator. The robot imitates the motion of an inchworm. The novel aspect of the compliant ring actuator is a spring-steel compliant mechanism that converts circumferential motion to radial motion of its multiple gripping pads. Circumferential motion to ring actuators is provided by two shape memory alloy (SMA) wires that are guided by insulating rollers. The design of the compliant mechanism is derived from a radially deployable mechanism. A unique feature of the design is that the compliant mechanism provides the necessary kinematic function within the limited annular space around the pipe and serves as the bias spring for the SMA wires. The robot has a control circuit that sequentially activates the SMA wires and the linear actuator; it also controls the crawling speed. The robot has been fabricated, tested, and automated. Its crawling speed is about 45 mm/min, and the weight is about 150 g. It fits within an annular space of a radial span of 15 mm to crawl on a pipe of 60-mm outer diameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies on a single-cavity, compact trapped vortex combustor concept showed good flame stability for a wide range of flow conditions. However, achieving good mixing between cavity products and mainstream flow was still a major challenge. In the present study, a passive mixing enhancement strategy of using inclined struts along with a flow guide vane is presented and experimentally tested at atmospheric pressure conditions. Results show excellent mixing and consequently low values of the combustor exit pattern factor in the range of 0.1 and small flame lengths (57 times the main-duct depth). The pressure drop is small in the range of 0.35%, and NOx levels of the order of 12ppm are achieved. The flame stability is excellent, and combustion efficiency is reasonable in the range of 96%. The effectiveness of the proposed strategy is explained on the basis of in-situ OH chemiluminescence images and prior numerical simulations of the resulting complex flow field. The flow guide vane is observed to lead to a counterclockwise cavity vortex, which is conducive to the rise of cavity combustion products along the inclined struts and subsequent mixing with the mainstream flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exponential compact higher-order schemes have been developed for unsteady convection-diffusion equation (CDE). One of the developed scheme is sixth-order accurate which is conditionally stable for the Peclet number 0 <= Pe <= 2.8 and the other is fourth-order accurate which is unconditionally stable. Schemes for two-dimensional (2D) problems are made to use alternate direction implicit (ADI) algorithm. Example problems are solved and the numerical solutions are compared with the analytical solutions for each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patches with variants of fractal Minkowski curves as boundaries are used here to design a polarization dependent electromagnetic bandgap surface. Reflection phases of the proposed structure depends upon the polarization state of the incident wave and frequency. The phase difference between the x-polarized and y-polarized components of the reflected wave can be as high as 200 degrees and this is achieved without excessive increase in unit cell dimensions and vias. The performance of the surface is analyzed numerically using CST microwave studio. The potential applications of the surface are in polarization conversion surfaces, polarimetric radar calibration, and RCS reduction.