172 resultados para Mass front
Resumo:
Abstract is not available.
Resumo:
The effect of vectored mass transfer on the flow and heat transfer of the steady laminar incompressible nonsimilar boundary layer with viscous dissipation for two-dimensional and axisymmetric porous bodies with pressure gradient has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The skin friction is strongly influenced by the vectored mass transfer, and the heat transfer both by the vectored mass transfer and dissipation parameter. It is observed that the vectored suction tends to delay the separation whereas the effect of the vectored injection is just the reverse. Our results agree with those of the local nonsimilarity, difference-differential and asymptotic methods but not with those of the local similarity method.
Resumo:
A mathematical model is developed to simulate oxygen consumption, heat generation and cell growth in solid state fermentation (SSF). The fungal growth on the solid substrate particles results in the increase of the cell film thickness around the particles. The model incorporates this increase in the biofilm size which leads to decrease in the porosity of the substrate bed and diffusivity of oxygen in the bed. The model also takes into account the effect of steric hindrance limitations in SSF. The growth of cells around single particle and resulting expansion of biofilm around the particle is analyzed for simplified zero and first order oxygen consumption kinetics. Under conditions of zero order kinetics, the model predicts upper limit on cell density. The model simulations for packed bed of solid particles in tray bioreactor show distinct limitations on growth due to simultaneous heat and mass transport phenomena accompanying solid state fermentation process. The extent of limitation due to heat and/or mass transport phenomena is analyzed during different stages of fermentation. It is expected that the model will lead to better understanding of the transport processes in SSF, and therefore, will assist in optimal design of bioreactors for SSF.
Resumo:
Natural peptide libraries often contain cyclodepsipeptides containing alpha or beta hydroxy residues. Extracts of fungal hyphae of Isaria yield a microheterogenous cyclodepsipeptide mixture in which two classes of molecules can be identified by mass spectral fragmentation of negative ions. In the case of isaridins, which contain an alpha-hydroxy residue and a beta-amino acid residue, a characteristic product ion corresponding to a neutral loss of 72 Da is obtained. hi addition, neutral loss of water followed by a 72 Da loss is also observed. Two distinct modes of fragmentation rationalize the observed product ion distribution. The neutral loss of 72 Da has also been obtained for a roseotoxin component, which is also an alpha-hydroxy residue containing cyclodepsipeptide. In the case of isariins, which contain a beta-hydroxy acid residue, ring opening and subsequent loss of the terminal residue as an unsaturated ketene fragment, rationalizes the observed product ion formation. Fragmentation of negative ions provide characteristic neutral losses, which are diagnostic of the presence of alpha-hydroxy or beta-hydroxy residues.
Resumo:
Reactive Pulsed Laser Deposition is a single step process wherein the ablated elemental metal reacts with a low pressure ambient gas to form a compound. We report here a Secondary Ion Mass Spectrometry based analytical methodology to conduct minimum number of experiments to arrive at optimal process parameters to obtain high quality TiN thin film. Quality of these films was confirmed by electron microscopic analysis. This methodology can be extended for optimization of other process parameters and materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objectives: Glutathionyl haemoglobin (GS-Hb) belonging to the class of glutathionylated proteins has been investigated as a possible marker of oxidative stress in different chronic diseases. The purpose of this study was to examine whether glutathionyl haemoglobin can serve as an oxidative stress marker in non-diabetic chronic renal failure patients on different renal replacement therapies (RRT) through its quantitation, and characterization of the specific binding site of glutathione in haemoglobin molecule by mass spectrometric analysis. Design and methods: The study group consisted of non-diabetic chronic renal failure patients on renal replacement therapy (RRT): hemodialysis (HD), continuous ambulatory peritoneal dialysis (CAPD) and renal allograft transplant (Txp) patients. Haemoglobin samples of these subjects were analyzed by liquid chromatography electrospray ionization mass spectrometry for GS-Hb quantitation. Characterization of GS-Hb was done by tandem mass spectrometry. Levels of erythrocyte glutathione (GSH) and lipid peroxidation (as thiobarbituric acid reacting substances) were measured spectrophotometrically, while glycated baernoglobin (HbA1c) was measured by HPLC. Results: GS-Hb levels were markedly elevated in the dialysis group and marginally in the transplant group as compared to the controls. GS-Hb levels correlated positively with lipid peroxidation and negatively with the erythrocyte glutathione levels in RRT groups indicating enhanced oxidative stress. De novo sequencing of the chymotryptic fragment of GS-Hb established that glutathione is attached to Cys-93 of the beta globin chain. Mass spectrometric quantitation of total glycated haemoglobin showed good agreement with HbA1c estimation by conventional HPLC method. Conclusions: Glutathionyl haemoglobin can serve as a clinical marker of oxidative stress in chronic debilitating therapies like RRT. Mass spectrometry provides a reliable analytical tool for quantitation and residue level characterization of different post-translational modifications of haemoglobin. (c) 2007 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Resumo:
Mycobacterium smegmatis is known to form biofilms and many cell surface molecules like core glycopeptidolipids and short-chain mycolates appear to play important role in the process. However, the involvement of the cell surface molecules in mycobacteria towards complete maturation of biofilms is still not clear. This work demonstrates the importance of the glycopeptidolipid species with hydroxylated alkyl chain and the epoxylated mycolic acids, during the process of biofilm development. In our previous study, we reported the impairment of biofilm formation in rpoZ-deleted M. smegmatis, where rpoZ codes for the ω subunit of RNA polymerase (R. Mathew, R. Mukherjee, R. Balachandar, D. Chatterji, Microbiology 152 (2006) 1741). Here we report the occurrence of planktonic growth in a mc2155 strain which is devoid of rpoZ gene. This strain is deficient in selective incorporation of the hydroxylated glycopeptidolipids and the epoxy mycolates to their respective locations in the cell wall. Hence it forms a mutant biofilm defective in maturation, wherein the cells undertake various alternative metabolic pathways to survive in an environment where oxygen, the terminal electron acceptor, is limiting.
Resumo:
The role of pheromones and pheromone-binding proteins in the laboratory rat has been extensively investigated. However, we have previously reported that the preputial gland of the Indian commensal rat produces a variety of pheromonal molecules and preputial glands would seem to be the predominant source for pheromonal communication. The presence of pheromone-binding proteins has not yet been identified in the preputial gland of the Indian commensal rat; therefore, the experiments were designed to unravel the alpha(2u)-globulin (alpha 2u) and its bound volatiles in the commensal rat. Total preputial glandular proteins were first fractionated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently analyzed by mass spectrometry. Further, we purified alpha 2u and screened for the presence of bound pheromonal molecules with the aid of gas chromatography/mass spectrometry (GC/MS). A novel alpha 2u was identified with a high score and this protein has not been previously described as present in the preputial gland of Indian commensal rats.This novel alpha 2u was then characterized by tandem mass spectrometry (MS/MS). Peptides with m/z values of 969, 1192, 1303 and 1876 were further fragmented with the aid of MS/MS and generated de novo sequences which provided additional evidence for the presence of alpha 2u in the preputial gland. Finally, we identified the presence of farnesol 1 and 2 bound to alpha 2u. The present investigation confirms the presence of alpha 2u (18.54 kDa) in the preputial gland of the Indian commensal rat and identifies farnesol 1 and 2 as probably involved in chemo-communication by the Indian commensal rat.Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
A switched rectifier DC voltage source three-level neutral-point-clamped (NPC) converter topology is proposed here to alleviate the inverter from capacitor voltage balancing in three-level drive systems. The proposed configuration requires only one DC link with a voltage of half of that needed in a conventional NPC inverter. To obtain a rated DC link voltage, the rectifier DC source is alternately connected in parallel to one of the two series capacitors using two switches and two diodes with device voltage ratings of half the total DC bus voltage. The frequency at which the voltage source is switched is independent of the inverter and will not affect its operation since the switched voltage source in this configuration balances the capacitors automatically. The proposed configuration can also be used as a conventional two-level inverter in the lower modulation index range, thereby increasing the reliability of the drivesystem. A space-vector-based PWM scheme is used to verify this proposed topology on a laboratory system.
Resumo:
De novo mass spectrometric sequencing of two Conus peptides, Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the southern Indian coast, is presented. The peptides, whose masses differ only by 2 Da, possess two disulfide bonds and an amidated C-terminus. Simple chemical modifications and enzymatic cleavage coupled with matrix assisted laser desorption ionization (MALDI) mass spectrometric analysis aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH2, and Vi1361, ZCCPTMPECCRI-NH2, Which differ only at residues 4 and 6 (Z = pyroglutamic acid). The presence of the pyroglutamyl residue at the N-terminus was unambiguously identified by chemical hydrolysis of the cyclic amide, followed by esterification. The presence of Ile residues in both the peptides was confirmed from high-energy collision induced dissociation (CID) studies, using the observation Of W-n- and d(n)-ions as a diagnostic. Differential cysteine labeling, in conjunction with MALDI-MS/MS, permitted establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of T-superfamily conotoxins, in particular the T-1 superfamily.
Resumo:
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.
Resumo:
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.
Resumo:
The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.