32 resultados para MAC Address


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicast in wireless sensor networks (WSNs) is an efficient way to spread the same data to multiple sensor nodes. It becomes more effective due to the broadcast nature of wireless link, where a message transmitted from one source is inherently received by all one-hop receivers, and therefore, there is no need to transmit the message one by one. Reliable multicast in WSNs is desirable for critical tasks like code updation and query based data collection. The erroneous nature of wireless medium coupled with limited resource of sensor nodes, makes the design of reliable multicast protocol a challenging task. In this work, we propose a time division multiple access (TDMA) based energy aware media access and control (TEA-MAC) protocol for reliable multicast in WSNs. The TDMA eliminates collisions, overhearing and idle listening, which are the main sources of reliability degradation and energy consumption. Furthermore, the proposed protocol is parametric in the sense that it can be used to trade-off reliability with energy and delay as per the requirement of the underlying applications. The performance of TEA-MAC has been evaluated by simulating it using Castalia network simulator. Simulation results show that TEA-MAC is able to considerably improve the performance of multicast communication in WSNs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clock synchronization in a wireless sensor network (WSN) is quite essential as it provides a consistent and a coherent time frame for all the nodes across the network. Typically, clock synchronization is achieved by message passing using a contention-based scheme for media access, like carrier sense multiple access (CSMA). The nodes try to synchronize with each other, by sending synchronization request messages. If many nodes try to send messages simultaneously, contention-based schemes cannot efficiently avoid collisions. In such a situation, there are chances of collisions, and hence, message losses, which, in turn, affects the convergence of the synchronization algorithms. However, the number of collisions can be reduced with a frame based approach like time division multiple access (TDMA) for message passing. In this paper, we propose a design to utilize TDMA-based media access and control (MAC) protocol for the performance improvement of clock synchronization protocols. The basic idea is to use TDMA-based transmissions when the degree of synchronization improves among the sensor nodes during the execution of the clock synchronization algorithm. The design significantly reduces the collisions among the synchronization protocol messages. We have simulated the proposed protocol in Castalia network simulator. The simulation results show that the proposed protocol significantly reduces the time required for synchronization and also improves the accuracy of the synchronization algorithm.